
These lecture notes are written for a course given at the GANDA conference in
Johannesburg September 30 - October 4, 2019. I apologize for any typos or
mathematical mistakes.
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1 Introduction
The idea behind this lecture is to give an introduction to modular forms, essentially
from first principles. We will in our exposition follow Zagier [2] rather closely.
There are many ways to approach this task and I have chosen to focus only on full
level modular forms, i.e. modular forms for the full modular group. As the over-all
goal of these lecture, we will give a self-contained proof of one of the congruences
for partition numbers due to Ramanujan himself. So let us recall what partition
numbers are.

1.1 Partition numbers
A natural combinatorial question to ask is, in how many ways one can write a
number N as a sum of smaller, positive integers. If one are studying ordered
partitions, where the order of the integers matters then the answer is easy and we
leave it as an exercise.

Exercise 1. Show that

#

(n1, . . . , nm) | ni ∈ Z≥1, n1 + . . .+ nm = N

 = 2N−1.

If we however ask for the number of unordered partitions, denoted by p(n), then the
question gets extremely complicated. Ramanujan however succeeded in finding
an asymptotic formula to the amazement of his peers (as is portrayed in the
Hollywood movie "The Man Who Knew Infinity"!). Furthermore he discovered
certain congruences satisfied by p(n). We will in these notes present a self-
contained proof of the following incredible congruence

p(5n+ 4) ≡ 0 mod 5,
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using modular forms. The starting point is the following product representation
for the generating series (which we leave to the reader to verify):

∏
n≥1

1
1− qn =

∑
n≥1

p(n)qn.

This product as a function of q turns out to posses a number of beautiful symmetries,
which in essence is the subject of the theory of modular forms. Ramanujan
found a way to ingeniously make use of these symmetries to obtain his wonderful
congruences.

2 The modular group
The starting point for modular forms is the action of

SL2(R) =
{(

a b
c d

)
| a, b, c, d ∈ R, ad− bc = 1

}

on the Poincare upper half-plane H = {x + iy ∈ C | y > 0} given by fractional
linear transformations;

γz := az + b

cz + d
, z ∈ H, γ =

(
a b
c d

)
.

Observe that the element
(
−1 0
0 −1

)
acts trivially and hence some textbooks

works with the modified group PSL2(R) = SL2(R)/± I

Exercise 2. Show that Im γz = Im z/|cz + d|2 and conclude γz ∈ H. Finally
show that the above defines a group action (i.e. γidz = z, γ′(γz) = (γ′γ)z).

Clearly the above also defines an action of the (discrete) subgroup SL2(Z) on H,
which we call the (full) modular group.
The main object of study this week will be functions f : H→ C which transforms
appropriately with respect to this action. First of all lets understand this action a
bit better.

Proposition 1. The region F = {z ∈ H | |z| > 1, |Rex| < 1/2} is a fundamen-
tal domain for the action of SL2(Z) on H. This means that for all z ∈ H there
exists γ ∈ SL2(Z) such that γz ∈ F and for all z, z′ ∈ F with z 6= z′ we have
γz 6= z′ for all γ ∈ SL2(Z).
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Proof. For any z ∈ H there are only finitely many γ such that |cz+d| ≤ 1 (why?).
By the above exercise we know Im γz = Im z/|cz + d|2 and thus there exists a
maximal γ0 ∈ SL2(Z) such that

Im(γ0z) ≥ Im(γz), for all γ ∈ SL2(Z).

Observe that the action of T :=
(

1 1
0 1

)
does not affect the imaginary part. Thus

we can choose a maximal γ0 as above with |Re γz| ≤ 1/2. By maximality we

have for S =
(

0 −1
1 0

)

Im(γ0z) ≥ Im(Sγ0z) = Im(γ0z)
|γ0z|2

.

Thus we conclude that |γ0z| ≥ 1 and thus γ0z ∈ F .
Now let z, z′ ∈ F with γz = z′ and assume WLOG Im z ≤ Im z′. Then we have

Im z ≤ Im z′ = Im z

|cz + d|2

and so |cz + d| ≤ 1. This inequality is however very restrictive since

|cz + d|2 = (cx+ d)2 + (cy)2

and y ≥
√

3/2. Thus we must have |c| ≤ 1 and we now just have to do some case
work.

If c = 0 then d = ±1 is the only possibility and thus γ =
(
±1 n
0 ±1

)
. Since

z, z′ ∈ F , the only possibility is |n| ≤ 1 and |Re z| = |Re z′| = 1/2.
If c = 1 then we have |cz + d| = |z + d| ≤ 1 which is only possible if |z| = 1 and
d = 0 or z = ω := e2πi/3, d = 1 or z = ω + 1 and d = −1.
The case c = −1 is completely analogous to c = 1.
This completes the proof since all equivalent pairs z, z′ ∈ F where shown to be
on the boundary.

A few remark; from the above one can easily determine all fixed points of the
SL2(Z)-action and one can show that SL2(Z) is generated by the two matrices
S, T defined above.
Now we are ready to define the main object of study

Definition 1. Amodular form of weight k is a holomorphic function f : H→ C
satisfying two conditions
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1. f(γz) = j(γ, z)kf(z) = (cz + d)kf(z), z ∈ H, γ =
(
a b
c d

)
∈ SL2(Z)

2. f is "holomorphic at∞"

We denote the set of all modular forms of weight k byMk(SL2(Z)).

This last condition requires some explanation; by the modular property we see
that f(z + 1) = f(z) and thus we can write f(z) = f̃(q) where f̃ = f ◦ log

2πi is
a holomorphic map defined on the annulus 0 < |q| < 1. We know that f̃ has a
Laurent expansion, which gives;

f(z) =
∑
n∈Z

ane
2πinz =

∑
n∈Z

anq
n, q = e2πiz. (1)

This is called the q-expansion of f . When y → ∞ we have e2πiz → 0, thus
q = 0 corresponds to a point at infinity (the cusp of SL2(Z)). We say that f is
"holomorphic at∞" if an = 0 for n < 0. If this is the case then f̃ has a removable
singularity at q = 0.
It is an important fact that modular forms only have a finite number of zeroes and
poles in F . This follows since f̃ is a holomorphic function defined in a bounded
region.

Exercise 3. Show that if f ∈Mk(SL2(Z)) for k odd then f ≡ 0

Of special interest are those modular forms with a0 = 0, which we call cusp
forms. We denote all cusp forms of weight k by Sk(SL2(Z)).

Exercise 4. Show thatMk(SL2(Z)) and Sk(SL2(Z)) admit a natural structure of
a C-vector space (by pointwise addition and scalar multiplication).

Exercise 5. Let f ∈ Mk(SL2(Z)) and g ∈ Ml(SL2(Z)) be modular forms
weight k and l respectively. Show that fg ∈ Ml+k(SL2(Z)). Furthermore if
f ∈ Mk(SL2(Z)) and g ∈ Sl(SL2(Z)) then fg ∈ Sl+k(SL2(Z)).This exercise
show thatM·(SL2(Z) has a natural structure of a graded algebra over C and
S·(SL2(Z)) is an ideal.

2.1 Eisenstein series
Up until now we haven’t seen any examples of modular forms. For k = 0 we have
all constants functions. For k ≥ 4 even, we can define a modular form by the
method of averaging as

Gk(z) := 1
2

∑
m,n∈Z

(m,n)6=(0,0)

1
(mz + n)k . (2)
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We want to argue that this series converges to a holomorphic function. So let z be
contained in a compact set. The number of intergersm,n such that

N < |mz + n| < N + 1,

is uniformly bounded by a constant times the number of lattice points in the annulus
of area π(N + 1)2 − πN2. It should be clear that this count is O(N). Thus we
have the following bound

∑
m,n

(m,n)6=(0,0)

∣∣∣∣∣ 1
(mz + n)k

∣∣∣∣∣ ≤ ∑
1≤N≤∞

N

Nk
,

which converges for k ≥ 4. Since the convergence is locally uniform, we know
that Gk(z) defines a holomorphic function. Note that the sum in (2) does not
converge absolutely for k = 2. We will however see later that we can define a
certain Eisenstein series of weight 2 by being a bit more careful.

Exercise 6. Show that Gk(z) for k ≥ 4 satisfy the modular transformation rule.

In order to show that Gk(z) is actually a modular form we need to calculate its
q-expansion.

Lemma 1. For k ≥ 4 we have the following q-expansion

Gk(z) = ζ(k) + (2πi)k
(k − 1)!

∑
n≥1

σk−1(n)qn,

where ζ(s) = ∑
n≥1 n

−s is the famous Riemann zeta-function andσs(n) = ∑
d|n d

s.
.

Proof. The starting point is the following identity due to Euler (we will omit the
proof)

π

tan πz = 1
z

+
∑
n≥1

1
z + n

+ 1
z − n

, z ∈ C\Z. (3)

Now the left hand-side is periodic of period one and its Fourier expansion can be
calculated in the following way for z ∈ H

π

tan πz = π cosπz
sin πz = πi(eπiz + e−πiz)

(eπiz − e−πiz) = −πi(1 + q)
1− q = −2πi

1
2 +

∑
n≥1

qn


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Now differentiating (3) a total of k − 1 times (which can be done term-wise by
locally uniform convergence) and using the above we arrive, after dividing by
(−1)k−1(k − 1)!, at

∑
n∈Z

1
(z + n)k = (−2πi)k

(k − 1)!
∑
n≥1

nk−1qn (4)

We now split the sum in (2) into those with c = 0 and c 6= 0

Gk(z) = 1
2
∑
n6=0

1
nk

+ 1
2
∑
m6=0

∑
n∈Z

1
(mz + n)k

= ζ(k) +
∑
m>0

(2πi)k
(k − 1)!

∑
n≥1

nk−1qmn

= ζ(k) + (2πi)k
(k − 1)!

∑
n≥1

σk−1(n)qn

using that for even k we have
∑
m∈Z

1
(mz+n)k = ∑

m∈Z
1

(−mz+n)k . This finishes the
proof.

A famous calculation of Euler yields for even k

ζ(k) = −Bk(2πi)k
k! ,

where Bk denotes the kth Bernoulli number defined by

x

ex − 1 =
∑
k≥1

Bkx
k

k! ,

of which the first few values are B2 = 1/6, B4 = −1/30, B6 = 1/42.
We now define a convenient re-scaling of Gk(z)

Ek(z) := ζ(k)−1Gk(z) = 1− 2k
Bk

∑
n≥1

σk−1(n)qn,

which we call the weight k (holomorphic) Eisenstein series. Using the values
for the Bernoulli numbers above we have

E4(z) = 1 + 240
∑
n≥1

σ3(n)qn,

E6(z) = 1− 504
∑
n≥1

σ5(n)qn.
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Exercise 7. Show that

Ek(z) = 1
2

∑
m,n∈Z

gcd(m,n)=1

(mz + n)−k.

As the above q-expansion shows the Eisenstein series are not cusp forms. We can
now however define one.

Exercise 8. Show that ∆(z) := 1
1728(E4(z)3 − E6(z)2) is a cusp form of weight

12 different from zero. (This is the famous Ramanujan ∆-function).

The coefficients in the q-expansion

∆(z) =
∑
n≥1

τ(n)qn

are called the Ramanujan tau-function, which has a number of very fascinating
properties (note that τ(1) = 1), which we will not touch upon.

2.2 The dimension formula
As we saw in the exerciseMk(SL2(Z)) is a vector space. An important result is
that one can actually calculate the dimension.
Recall that the zeroes and poles of a holomorphic function is a discrete set. In
particular there are only finitely many zeroes and poles in any bounded region.
A modular form does not quite define a function on the quotient SL2(Z)\H. We
can however for a point in SL2(Z)\H define the order as the smallest n such that
an 6= 0 in the Taylor expansion at any representative in H, which one checks is
well-defined using the modular transformation rule.
In order to calculate the dimensions of Mk(SL2(Z)) we take advantage of the
geometry of the fundamental region as described above. We will rely on complex
analysis and do a contour integral along the boundary of F (or a modified version)
with ε-neighborhoods removed around the special points i, ω, ω+1,∞. This leads
to The Valence Formula.

Proposition 2 (The Valence Formula). Let f ∈ Mk(SL2(Z)) be a weight k
modular form different from zero. Then we have

∑
P∈SL2(Z)\H

ordP (f)
nP

+ ord∞(f) = k

12 ,

where nP = 2 or 3 if P is equivalent to i or ω and nP = 1 otherwise (here
P ∈ SL2(Z)\H means that P runs through a set of representatives of the quotient
space and as mentioned above the order of such a representative is well-defined).
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Proof. The main ingredient is Cauchy’s formula for a meromorphic function g

1
2πi

∫
γ

g′(z)
g(z) dz =

∑
P∈Ω

ordP (g),

where γ is a simple, closed curve bounding the region Ω and ordP (g) is the order
of g at P (recall that ordP (g) = 0 for all but finitely many P since the set of zeroes
and poles is discrete).
We will apply this formula to path σ (avoiding poles or zeroes of f ), which is
a modified version of the boundary of F . We construct σ by removing a circle
segment of radius ε around i, ω, ω + 1 and a neighborhood at infinity; Im z > Y
(corresponding to 0 < |q| < e−2πY ) and finally correcting by small semi-circles
around the poles on the boundary.

As we already mentioned f only has a finite number of poles and zeroes in F .
Thus if we make ε small enough and Y big enough (so that σ incloses all poles and
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zeroes of f , except those possibly at i, ω, ω + 1,∞), we get by Cauchy’s formula

1
2πi

∫
σ

f ′(z)
f(z) dz =

∑
P∈SL2(Z)\H

P 6=i,ω

ordP (f)

since nP = 1 in this case. Nowwe analyze the integral on the left hand-side above.

Since f(z) = f(z + 1) the integral along the vertical lines ±1/2 cancel.
The integral [−1/2 + iY, 1/2 + iY ] yields after a change of variable q = e2πiz

1
2πi

∫
[−1/2+iY,1/2+iY ]

f ′(z)
f(z) dz = 1

2πi

∫
|q|=e−2πY

f ′(q)
f(q) dq = ord∞(f)

Now the integral along the circle segment at ω yields

1
2πi

∫
Cω,ε

f ′(z)
f(z) dz

= 1
2πi

∫
Cω,ε

ordω(f)
z

dz + 1
2πi

∫
Cω,ε

f0(z)dz

=− ordω(f)
2π

∫ π/2

π/6+θ(ε)
1 dθ − 1

2πi

∫
Cω,ε

f0(z)dz,

which converges to −ordω(f)
6 as ε→ 0 and similarly for the integral along Cω+1,ε.

A very similar argument (do it!) yields that Cε,i converges to −ordi(f)
2 . By the

modular property f(−1/z) = zkf(z), we get

1
2πi

∫
σ1,ε

f ′(z)
f(z) dz = − 1

2πi

∫
σ2,ε

f ′(z)
f(z) dz −

1
2πi

∫
σ2,ε

k

z
dz

By the above we get that

1
2πi

∫
σ1,ε

f ′(z)
f(z) dz + 1

2πi

∫
σ2,ε

f ′(z)
f(z) dz →

k

12

as ε→ 0 since σ2,ε will converge to 1/12-th of the unit circle.
Adding up all the contributions this yields the desired result in the limit ε→ 0.

Exercise 9. Use the valence formula to prove that ∆(z) 6= 0 for z ∈ H

Corollary 1.

dimC(Mk(SL2(Z))) ≤

b
k
12c+ 1 k 6≡ 2 mod 12
b k12c k ≡ 2 mod 12
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Proof. Choose P1, . . . , Pb k12 c+1 points in the interior of F . Then for any set
f1, . . . , fb k12 c+2 of modular forms of weight k, we can find a linear combination f ,
which vanishes at all Pi by solving the system of linear equations. By the valence
formula this implies f ≡ 0. This gives the required bound for k 6≡ 2 (mod 12).
For k ≡ 2 (mod 12) the valence formula yields that

2 ordω(f) + 3 ordi(f) ≡ 1 mod 6

Since ordω(f), ordi(f) ≥ 0 this means that

ordω(f)
3 + ordi(f)

2 ≥ 7
6

In particular any modular form f of weight k can have at most b k12c − 1 zeroes in
the interior of F . Now the same argument as above yields the desired bound for
such k.

From the above it follows that dimC(Mk(SL2(Z))) = 0 for k ≤ 0 and we have
already seen that dimC(Mk(SL2(Z))) = 0 for k odd. It turns out that these upper
bounds are sharp for k > 0 and k even. This follows from the following

Lemma 2. The Eisenstein series E4 and E6 are algebraically independent (over
C).

Proof. First of all it is enough to show that E4(z)3 and E6(z)2 are algebraically
independent since if P (E4(z), E6(z)) ≡ 0 then a short calculation shows that we
can write ∏

0≤j≤2,
0≤j′≤1

P ((e2πi/3)jX, (−1)j′Y ) = Q(X3, Y 2)

for some Q ∈ C[X, Y ] and now Q(E4(z)3, E6(z)2) ≡ 0.
If Q(E4(z)3, E6(z)2) ≡ 0 then by using the modular transformation rule, we see
that all homogenous parts Q(d)(E4(z)3, E6(z)2) have to vanish identically. From
this it follows that for all d:

Q(d)(E4(z)3/E6(z)2, 1) ≡ 0,

but since any non-zero polynomial has a finite number of roots, this implies that
we can write E4(z)3 = λE6(z)2 for some constant λ ∈ C.
Now if we consider the function f(z) = E6(z)/E4(z), its square is equal to λE4(z)
and thus f cannot have any poles (not at infinity either). This means that f is a
modular form of weight 2, contradicting the inequality dimC(M2(SL2(Z))) ≤ 0.
This finishes the proof.
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Exercise 10. Conclude from the above lemma that the bounds in Corollary 1 are
sharp.

Putting all this together we get the following structural description ofM·(SL2(Z).

Corollary 2. M·(SL2(Z)) is freely generated by E4 and E6 as a graded algebra
over C.

Now we know the dimensions of the space of modular forms, but what about the
subspace of cusp forms Sk(SL2(Z))? Actually this follows quite easily.

Exercise 11. Argue that there are no cusp forms of weight < 12. Show using the
valence formula that ∆(z) 6= 0 for z ∈ H. Use this to show that multiplication by
∆ defines an isomorphismMk(SL2(Z)) ∼= Sk+12(SL2(Z)).

3 Eisenstein series of weight 2 and the Serre deriva-
tive

As we already mentioned, the formula (2) does not converge for k = 2. However
by using (4), if we fix the order of summation of m and n then we do get a
convergent series:

G2(z) := 1
2
∑
n6=0

1
n2 + 1

2
∑
m 6=0

∑
n∈Z

1
(mz + n)2

 ,
which has the following Fourier expansion

G2(z) = ζ(2) + (2πi)2 ∑
n≥1

σ1(n)q,

by the above. We know from the above dimension formulas that this is not a
modular form, but it still satisfies some version of the modular transformation
rule.

Proposition 3. We have

G2(γz) = j(γ, z)2G(z)− πi c j(γ, z),

for γ ∈ SL2(Z).

Proof. We will here present a proof due to Hecke and following Zagier [2].
Consider for ε > 0 the following absolutely convergent series

G2,ε(z) = 1
2
∑
n6=0

1
n2+2ε + 1

2
∑
m6=0

∑
n∈Z

1
(mz + n)2|mz + n|2ε

,
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which satisfies the transformation rule

G2,ε(γz) = j(γ, z)2|j(γ, z)|2εG2,ε(z).

The point of the proof is now to show that limε→0G2,ε(γz) exists and is equal to
G2(z)− π/2y. From this and the above, the result follows.
To do this we introduce the function

Iε(z) :=
∫ ∞
−∞

dt

(z + t)2|z + t|2ε
,

which by a change of variable is equal to

Iε(z) = Iε(x+ iy) =
∫ ∞
−∞

dt

(x+ iy + t)2|x+ iy + t|2ε
= I(ε)
y1+2ε , (5)

where

I(ε) =
∫ ∞
−∞

dt

(t+ i)2|t2 + 1|ε .

Now we consider the difference

G2,ε(z)−
∑
m>0

Iε(mz)

=
∞∑
n=1

1
n2+2ε +

∑
m>0

∑
n∈Z

(
1

(mz + n)2|mz + n|2ε
−
∫ n+1

n

dt

(mz + t)2|mz + t|2ε

)
,

where we note that the sum overm is absolutely convergent by (5). By the mean-
value theorem the summand above is bounded by O(|mz + n|−3−2ε) and thus the
sum is absolutely convergent for ε > −1/2. Thus we can take the limit ε → 0
term by term to arrive at

lim
ε→0

(
G2,ε(z)−

∑
m>0

Iε(mz)
)

=
∑
m>0

∑
n∈Z

(
1

(mz + n)2 −
∫ n+1

n

dt

(mz + t)2

)

=
∑
m>0

∑
n∈Z

(
1

(mz + n)2 −
1

mz + n+ 1 + 1
mz + n

)
.

Now it is easy to see that the following telescoping sum vanishes;

∑
n∈Z

( 1
mz + n+ 1 −

1
mz + n

)
= lim

N→∞

( 1
mz +N + 1 −

1
mz −N

)
= 0.
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And thus the above limit equals G2(z).
Now we see easily using (5) that

I(0) =
∫ ∞
−∞

dt

(t+ i)2 =
[
− 1
t+ i

]∞
−∞

= 0,

and by direct computation, we get;

I ′(0) =
∫ ∞
−∞

log(t2 + 1)
(t+ i)2 dt =

[
1 + log(t2 + 1)

t+ i
− arctan(t)

]∞
−∞

= −π.

Using Taylor expansions, the above implies;

∑
m>0

Iε(mz) = I(ε)
∑
m>0

1
(my)1+2ε

= I(ε)ζ(1 + 2ε)y−1−2ε =
(
−πε+O(ε2)

)( 1
2ε +O(1)

)
y−1−2ε,

where we used that by partial summation

ζ(1 + 2ε) = (1 + ε)
∫ ∞

1

∑
n≤x 1
x2+2ε dx = 1

2ε +O(1),

as ε→ 0. Thus we conclude that∑
m>0

Iε(mz)→ −π/2y,

as ε→ 0. This finishes the proof.

As above we consider the following renormalized version;

E2(z) := 6
π2G2(z) = 1− 24

∑
n≥1

σ1(n)qn.

As a first application we will derive a product expansion for the Ramanujan ∆-
function.

Corollary 3. We have
∆(z) := q

∏
n≥1

(1− qn)24 .

Proof. Denote by ∆̃ the function defined by the above product, which we observe
is indeed absolutely convergent. We get directly that ∆̃ is cuspidal at ∞ and
non-zero for z ∈ H. We will now prove that ∆̃ is a cusp form of weight 12, and
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thus conclude that ∆̃ = ∆ (by comparing the coefficient of q).
Since ∆̃(z) is non-zero we can consider its logarithmic derivative;

1
2πi

∂

∂z
log ∆(z) = 1− 24

∑
n≥1

nqn

1− qn = 1− 24
∑
n≥1

σ1(n)qn,

which we recognized as E2(z). Now using the proposition above we see that

1
2πi

∂

∂z
log

(
∆(γz)

j(γ, z)12∆(z)

)

= j(γ, z)−2E2(γz)− E2(z)− 12
2πi

c

j(γ, z) = 0.

Thus we see that
∆(γz) = C(γ)j(γ, z)12∆(z),

for some constant C(γ), which we would like to show is equal to 1. We only have
to check this for the generators S, T . It is obvious for T since ∆ is 1-periodic and
it follows for S by considering

∆(Sz) = C(S)z12∆(z)

at the point z = i.

Now we consider the following operator known as the Serre derivative acting on
smooth maps H→ C;

ϑkf := f ′ − k

12E2f,

where f ′ := 1
2πi

∂
∂z
f .

Lemma 3. The Serre derivate ϑ defines a mapMk(SL2(Z))→Mk+2(SL2(Z)).

Proof. Let f ∈ Mk(SL2(Z)). By using chain rule, product rule and modularity
we see that

j(γ, z)−2f ′(γz) = (f(γz))′

=
(
j(γ, z)kf(z)

)′
= j(γ, z)kf ′(z) + kc

2πij(γ, z)k−1f(z).

This shows that

f ′(γz) = j(γ, z)k+2f ′(z) + kc

2πij(γ, z)k+1f(z),

which combined with the proposition above, yields the wanted.
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One can generalize the above to also apply toE2 itself. We leave this as an exercise.

Exercise 12. Show that ϑ2E2 ∈M4(SL2(Z)) and conclude that ϑ2E2 = −E4/6.

With these tools at hand we are ready to finish off with our proof of the main
theorem following [1].

Theorem 1. We have the following congruence p(5n+ 4) ≡ 0 mod 5.

Proof. By looking at the Fourier expansions we see that coefficient for coefficient;

E4 ≡ 1, E6 ≡ E2 mod 5,

using Fermat’s theorem; n5 ≡ n (5) in the second congruence.
This implies together with the exercise above that

E3
4 − E2

6 ≡ E4 − E2
2 ≡ −12E ′2 ≡ 3E ′2 mod 5.

On the other hand the above is connected to ∆ as follows

E3
4 − E2

6

= 1728∆
≡ 3q

∏
n≥1

(1− qn)24

≡ 3q
∏
n≥1(1− qn)25∏
n≥1(1− qn)

≡ 3q
∏
n≥1(1− q25n)∏
n≥1(1− qn) mod 5,

using the binomial theorem and the fact that 5 |
(

25
i

)
for 0 < i < 25 (why?). From

this we see that

E ′2 ≡ q
∏
n≥1

(1− q25n)
∑
n≥1

p(n)qn
 mod 5.

Now we compare the coefficients of q5n for n > 0 on both sides. For E ′2 all of
these coefficients are ≡ 0 mod 5 and thus we get∏

n≥1
(1− q25n)

∑
n≥1

p(5n+ 4)q5n+5

 ≡ 0 mod 5.

Now the conclusion follows by an easy induction.
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