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Abstract

The aim of this mini-course, given at the University of Stellenbosch in November 2023, is to give an
introduction to the theory of ℓ-adic and adelic Galois representations, with a particular emphasis on the
entanglement phenomenon, which studies the interactions between different ℓ-adic representations when
the prime ℓ varies.

1 Introduction

The ring of rational integers Z is one of the simplest, but also most mysterious rings that exist in mathemat-
ical nature. In particular, the interaction between the sum and product operations on Z is still the object of
many tantalizing conjectures, the most celebrated of which is probably due to Goldbach (who conjectured
that every even integer n ≥ 4 should be the sum of two primes).

It turns out that studying Z as a ring is essentially equivalent, thanks to a well known lemma of Yoneda,
to studying Diophantine equations f (x1, . . . , xn) = 0, where f ∈ Z[x1, . . . , xn] is a multivariate polynomial
with integer coefficients. This problem is well known to be extremely difficult. For example, a theorem of
Matiyasevich, which solved the tenth of Hilbert’s problems, showed that there does not exist a universal
algorithm for solving such Diophantine equations. This confirms the fact that finding explicitly all the solu-
tions of a given family of Diophantine equations is usually a very difficult task. The prototypical examples
of this fact are given by Fermat’s family xn + yn = zn and by Catalan’s family xa − yb = 1.

Despite this negative news, there is a way to access the sets of integer solutions of a Diophantine equation
f (x1, . . . , xn) = 0. More precisely, homogenizing the polynomial one can actually look at the set X f (Q) of
rational solutions to this Diophantine equation. Then, such a set can be seen as the set of those algebraic
solutions X f (Q) which are invariant under the action of the absolute Galois group ΓQ := Gal(Q/Q). Therefore,
the study of solutions of Diophantine equations can be reduced to the study of the absolute Galois group ΓQ

and of its actions.
In fact, studying a compact topological group, such as the absolute Galois group, is essentially equivalent

to unraveling the mysteries behind its actions. More precisely, given a compact topological group G, the
category of its complex linear representations Π(G) can be used to reconstruct the group G in question, and
its topology, thanks to a celebrated result of Tannaka. In particular, one can apply this philosophy to the
absolute Galois group G = ΓF := Gal(F/F) of a field F.

If F is a number field, which is to say that F contains the field of rational numbers Q and is a finite di-
mensional vector space over it, every linear complex representation ρ : ΓF → GLn(C) factors through a finite
quotient ΓF ↠ G. In particular, G will be the Galois group of a finite extension L = F[x]/( f (x)), and the
resulting representation G → GLn(C) corresponds to the action of G on the roots of the polynomial f (x).

These representations are already very rich. For example, if F = Q, then one expects that every finite
group G should be a quotient of ΓQ. This is usually known as the inverse Galois problem, and has been
the subject of a mini-course by Angelot Behajaina, given in Stellenbosch during the spring semester of the
academic year 2021/22.

During the present course, we will instead look at different fields, and even rings of coefficients. In
particular, we will be interested in finite Galois representations of the form ρN : ΓF → GLn(Z/NZ). When
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N is a power of a single prime ℓ, one can often assemble all these representations along the quotient maps
GLn(Z/ℓk+1Z) ↠ GLn(Z/ℓkZ), and obtain a new representation ρℓ∞ : ΓF → GLn(Zℓ) with coefficients
in the ring Zℓ := lim←−k

Z/ℓkZ of ℓ-adic integers. Taking the field of fractions of Zℓ, one ends up with
the field of ℓ-adic numbers Qℓ, which can be seen as an analogue of the field of real numbers. Taking the
algebraic closure Qℓ one obtains a field which is not complete any more, but taking the completion of Qℓ

yields a complete and algebraically closed field Cℓ, which is the analogue of complex numbers. Then, one
can consider representations of ΓF with coefficients in the fields Qℓ and Cℓ, which are amenable to the same
Tannakian reconstruction results.

These representations are much richer than the ones with complex coefficients, thanks to the totally dis-
connected nature of the topology on Zℓ. In particular, one can associate to every algebraic variety X defined
over a number field F, every pair of integers i, j ∈N, and every prime ℓ, a Galois representation

ρX,i,j,ℓ∞ : ΓF → GL(Hi
ét(XF; Qℓ(j))) ∼= GLn(Qℓ),

where Hi
ét(XF; Qℓ(j)) denotes the i-th étale cohomology group of the base change of X to the algebraic closure

F of F, with coefficients in the Tate twist Qℓ(j). In particular, the vector spaces Hi
ét(XF; Qℓ(j)) can be related

to the singular cohomology of the topological space given by the complex points of X (taken along any
embedding F ↪→ C), and this relation allows one to compute the dimension n = dimQℓ

(Hi
ét(XF; Qℓ(j))) of

such vector spaces.

Class field theory

Particularly interesting examples of these kinds of representations arise when n = 1 or n = 2. In the first case,
one obtains the characters of the absolute Galois group ΓF, which completely determine the abelianization
Γab

F := ΓF/[ΓF, ΓF]. This is the subject of class field theory, which provides a surjective map

[F, ·] : A×F ↠ Γab
F ,

known as the Artin map, whose kernel can be explicitly determined. Here, A×F denotes the group of units of
the ring of adèles AF associated to the number field F, which is obtained by putting together all its different
completions Fv.

The first part of the present course will consist in giving a presentation of the main results of class field
theory, while recalling some basics from Galois theory and algebraic number theory.

Elliptic curves and their entanglement

In the second part of our course, we will look at two dimensional Galois representations, focusing on those
that come from elliptic curves. More precisely, for every elliptic curve E defined over a number field F, one
has an isomorphism

H1
ét(EF; Zℓ(1)) ∼= Tℓ(E) := lim←−

k
E[ℓk](F)

between the first étale cohomology group of E, with coefficients in Zℓ(1), and the Tate module Tℓ(E), which
is given by assembling together the different groups of torsion points E[ℓk](F) ∼= (Z/ℓkZ)2 along the
multiplication-by-ℓ maps [ℓ] : E[ℓk+1]→ E[ℓk]. In particular, this gives rise to a Galois representation

ρE,ℓ∞ : ΓF → GL(Tℓ(E)) ∼= GL2(Zℓ) ∼= AutZ(E[ℓ∞](F)),

where E[ℓ∞](F) denotes the abelian group of those torsion points of E that have ℓ-power order. Through
this isomorphism, ρE,ℓ∞ can actually be seen as the Galois representation induced by the natural action of
ΓF on the abelian group E[ℓ∞]. This approach can actually be “globalized”, and yields the adelic Galois
representation

ρE : ΓF → AutZ(Etors) ∼= GL2(Ẑ),
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where Ẑ := lim←−N
Z/NZ denotes the ring of profinite integers, and Etors := E(F)tors denotes the group of

torsion points of E.
It turns out that the Galois representation ρE is intimately related to the arithmetic properties of the

elliptic curve E. In particular, if E does not have complex multiplication, a celebrated theorem of Jean-Pierre
Serre shows that the image of ρE has finite index inside GL2(Ẑ). Finding this index, and computing this
image, turn out to be two highly non-trivial tasks, which have attracted a lot of attention in the past years. In
particular, it has been observed that in several cases the aforementioned image is not given by the product
of the images of the ℓ-adic representations ρE,ℓ∞ . When such a phenomenon occurs, one poetically says that
these representations are entangled.

On the other hand, when the elliptic curve E has complex multiplication by an order O, the image of ρE
is much smaller, as it is essentially contained inside the group of automorphisms of Etors which respect its
structure ofO-module. This group of automorphisms is abelian, and is in fact isomorphic to the units Ô× in-
side the profinite completion Ô := lim←−N

O/NO of the ringO. The simplicity of these Galois representations
allows one to study the entanglement between the division fields of elliptic curves with complex multiplica-
tion more in detail, which is what we did in two joint works with Francesco Campagna. Moreover, elliptic
curves with complex multiplication allow one to answer affirmatively Hilber’s 12th problem for imaginary
quadratic fields, as given by Kronecker’s insight.

In the second part of my course, I will give an overview of these results, with a focus on explicit examples.

2 Plan of the course

Each lecture will consist of one hour.

Lecture 1 Introduction: from Z to Galois representations.

Lecture 2 Tannaka’s reconstruction theorem.

Lecture 3 Reminders of finite and infinite Galois theory, with examples.

Lecture 4 Reminders of algebraic number theory, with examples.

Lecture 5 Reminders of local fields.

Lecture 6 The local and global Kronecker-Weber theorem. The cyclotomic character.

Lecture 7 Local and global class field theories. Ring and ray class fields.

Lecture 8 Reminders on elliptic curves and their Galois representations.

Lecture 9 Serre’s open image theorem.

Lecture 10 Elliptic curves with complex multiplication and ray class fields of imaginary quadratic fields:
Kronecker’s youth dream.

Lecture 11 Entanglement: definition and examples.

Lecture 12 Entanglement between the division fields of elliptic curves with complex multiplication (based
on joint work with Francesco Campagna).

https://sites.google.com/view/francesco-campagna/home
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