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Preface

December 22, 2017 marked the 130 birth anniversary of Srinivasa Ramanujan. To
commemorate this occasion, the Institute of Mathematical Sciences (Chennai) and
the Indian Institute of Technology (Ropar) organized an international conference on
Number Theory. The conference was held at IIT Ropar during December 22–25, 2017.
It featured a very diverse group of speakers and correspondingly, the talks covered
many different areas of Number Theory. In particular, there were talks on L-functions,
Automorphic forms, Abelian varieties and Transcendence.

We are thankful to the participants of the conference who provided a vibrant
intellectual atmosphere amidst the verdant surroundings in Ropar. We had a rewarding
and fulfilling experience as organisers, and we take this opportunity to thank our
institutes IMSc, Chennai and IIT Ropar for their unfailing and continuous support for
this conference.

To enable young researchers an opportunity to glimpse the state-of-the-art in these
important areas of Number Theory, it was decided to publish the proceedings of the
conference. We are really grateful to the speakers who kindly agreed to give us their
articles and were patient with the refereeing process.

Finally, we would like to thank the editorial board members and the technical staff
of the RMS Lecture Notes Series without whose support this proceedings would not
have seen the light of day.

Tapas Chatterjee and Sanoli Gun

v



Members of the Advisory Board

R. Balasubramanian (IMSc, Chennai, India)
R. B. Bapat (ISI, Delhi, India)
Manjul Bhargava (Princeton U, NJ, USA)
J. H. Coates (Cambridge U, UK)
W. Goldman (U of Maryland, Md, USA)
G. Misra (IISc, Bangalore, India)
V. Kumar Murty (U of Toronto, Canada)
M. S. Narasimhan (IISc, Bangalore, India)
Nitin Nitsure (TIFR, Mumbai, India)
Gopal Prasad (U of Michigan, Michigan, USA)
M. S. Raghunathan (TIFR, Mumbai, India)
S. S. Sane (IIT, Mumbai, India)
V. D. Sharma (IIT, Mumbai, India)
Alladi Sitaram (Formerly at ISI, Bangalore, India)
V. Srinivas (TIFR, Mumbai, India)
S. Thangavelu (IISc, Bangalore, India)
V. S. Varadarajan (UCLA, California, USA)
S. R. S. Varadhan (Courant Institute, New York, USA)
S. T. Yau (Harvard U, Mass, USA)

vi



LIST OF PARTICIPANTS

Speakers

(1) S. D. Adhikari, HRI Allahabad
(2) S. Baier, JNU Delhi
(3) A. Bhand, IISER Bhopal
(4) A. Bharadwaj, CMI Chennai
(5) T. Chatterjee, IIT Ropar
(6) S. Das, IISc Bangalore
(7) T. Dalal , IIT Hyderabad
(8) P. Darbar, IMSc Chennai
(9) S. David, University of Paris VI, France

(10) P. K. Dey, ISI Delhi
(11) S. Dhillon, IIT Ropar
(12) Anup Dixit, University of Toronto, Canada
(13) Atul Dixit, IIT Gandhinagar
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On the Non-Vanishing of Periodic Dirichlet Series

Abhishek T. Bharadwaj

Chennai Mathematical Institute, H1 Sipcot IT Park, Siruseri, Kellambakkam,
Chennai 603 103, India.
e-mail: abhitvt@cmi.ac.in

Abstract. The article describes the state of the art on the question of non-vanishing of
L(1, f ) for periodic arithmetic functions f . En-route, we also have some supplementary
results for odd periodic arithmetic functions f . The methods used here build upon purely
algebraic conditions.

Keywords. Dirichlet L functions, linear forms in logarithms, Erdős conjecture.

Subject Classification: 11M06, 11J86

1. Introduction

A complex number α is said to be an algebraic number if it is a root of a non-zero
polynomial equation with integer entries. The complex numbers which do not satisfy
any such polynomial equation are called transcendental numbers. The first example
of a transcendental number was found by Liouville in the year 1844, where he proved
that

∑∞
n=1

1
10n! is transcendental. Hermite went on to prove that e is transcendental

in 1873. Shortly after that, Lindemann proved the transcendence of π and stated the
linear independence of exponentials of algebraic numbers over the field of algebraic
numbers Q. This was rigorously proved by Weierstrass in 1885.

We are interested in the special values of the Dirichlet series defined by

L(s, f ) :=
∞∑

n=1

f (n)

ns
for �(s) > 1,

where f : N → C is an arithmetic function of period q ≥ 1 i.e. f (n + q) = f (n)
for all integers n. The Hurwitz zeta functions evaluated at the rational numbers a/q
for 1 ≤ a ≤ q are the building blocks for these periodic Dirichlet series. The Hurwitz
zeta function is defined by the series :

ζ(s, x) :=
∞∑

n=0

1

(n + x)s
for �(s) > 1 and 0 < x ≤ 1.

Hurwitz had proved that ζ(s, x) extends analytically to the entire complex plane, apart
from s = 1, where it has a simple pole with residue 1. Note that ζ(s, 1) is the classical
Riemann zeta function

∑∞
n=1

1
ns .

1
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It is a standard result that for a non-zero complex valued function f , there exists a
real number σ such that L(s, f ) does not attain a zero whenever �(s) > σ . However,
we cannot conclude that L(s, f ) has finitely many zeros. In fact, ζ(s, x) does have
infinitely many zeros in �(s) > 1 when x �= 1, 1/2. This was shown by Davenport
and Heilbronn [12] for rational as well as transcendental x and by Cassels [8] when x
is an irrational algebraic number.

However, in this article, our primary focus will be on the transcendental nature of
L(s, f ) at s = 1 for periodic arithmetic function f , whenever it exists. We would like
to make a remark that L(s, f ) cannot be evaluated at s = 1 for all periodic arithmetic
functions f . When the sum

∑
n≥1

f (n)
n converges, then the function L(s, f ) can be

extended beyond �(s) > 1 and it turns out that the value L(1, f ) is nothing but∑
n≥1

f (n)
n . Hence we freely use the notation L(1, f ) to denote

∑
n≥1

f (n)
n .

The first non-trivial and important examples of Dirichlet series are L(s, χ) for
a character χ of conductor fχ . The proof of infinitude of primes in arithmetic
progression an + b with (a, b) = 1, boils down to non-vanishing of L(1, χ) for
non-principal characters χ of period a and hence such non-vanishing question is of
great interest. One of the interesting aspects about these numbers is that they are
transcendental numbers. The proof of the above involves Baker’s theory of linear
form in logarithms. When f is periodic, we mention the criteria for the convergence
of the sum L(s, f ) at s = 1 along with the explicit expression of L(1, χ) for Dirichlet
Characters χ in Section 2.

We now look at the result by replacing characters with certain algebraic valued
arithmetic functions f . More generally, we want to address the question of
non-vanishing of L(1, f ) by removing the property of Euler product. In relation to
this, Chowla had asked the following question in 1969 in a number theory conference:

Question 1.1. Does there exist a rational valued arithmetic function f , periodic with
prime period p such that L(1, f ) = 0 whenever it converges?

Baker, Birch and Wirsing generalized this question and answered it by using
Baker’s theory of linear forms in logarithms in 1973. Their proof involves the
non-vanishing of L(1, χ). However, for odd rational valued arithmetic functions of
prime period, the proof can be simplified. We present it in Section 3.

One of the long standing conjectures in this topic is Erdős Conjecture. In a written
communication with Livingston [15], Paul Erdős had made the following conjecture
which we quote verbatim.

Conjecture 1.2. If q is a positive integer and f is a number theoretic function with
period q and f (n) ∈ {−1, 1} when n = 1, 2, . . . q − 1 and f (n) = 0 whenever
n ≡ 0 mod q then

∑ f (n)
n �= 0.

From now on, we call such functions Erdősian. Questions of this type were discussed
by Chowla in his earlier works ([10] and [11]) for a prime period p. This will be
discussed in detail along with Okada’s criterion. Okada gave a necessary and sufficient
condition for the vanishing of the periodic Dirichlet series at s = 1. Since then,
the general philosophy is the following: find conditions on the function f such that
L(1, f ) doesn’t vanish, and check whether certain ‘classes’ of Erdősian functions
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satisfy the condition. In fact, some of the attempts to solve Conjecture 1.2 revolves
around the criterion given by Okada. This is discussed in detail in Sections 4, 5 and 6.

A criterion for non-vanishing of L(1, f ) requires looking at the odd parts and
even parts of f respectively (these are defined in Section 4.3). While L(1, f ) is an
algebraic multiple of π when f is odd, for even f , the non-vanishing of L(1, f ) is
more delicate. This involves Ramchandra units and a classification by H. Bass. This
will be discussed in Section 7.

This conjecture has been settled by M. Ram Murty and N. Saradha [21] when the
period q is in the equivalence class 3 mod 4. In the end, we extend their arguments
to some more general cases. In particular, these methods are applicable to odd
functions f . For instance, we give a necessary and sufficient condition for a Z-linear
combination of cotangents

(p−1)/2∑

i=1

ai
1+ ζ i

p

1− ζ i
p

with integer coefficients ai , to be an algebraic integer. Such conditions arise naturally
when L(1, f ) = 0 for odd rational valued periodic arithmetic function f . This will
be discussed in Section 8.

2. Periodic Dirichlet series

2.1 Convergence of L(1, f ) and the value at s = 1

Let f : N→ C be an arithmetic function of period q. The function L(s, f ) converges
absolutely and uniformly on compact subsets of the complex plane for �(s) > 1 and
hence is a holomorphic function there. Following [20], we write

L(s, f ) = q−s
q∑

a=1

f (a)ζ

(

s,
a

q

)

. (1)

To evaluate the function at s = 1, we shall use the following fact:

lim
s→1+

ζ(s, x)− 1

s − 1
= −�

′(x)
�(x)

= −�(x) (2)

where �(x) := ∫∞
0 e−t t x−1dt denotes the gamma function. Using (2), we can write

(1) as

L(s, f ) = q−s
q∑

a=1

f (a)

(

ζ

(

s,
a

q

)

− 1

s − 1

)

+ q−s

s − 1

q∑

a=1

f (a). (3)

Hence evaluating the limit at s = 1, we get the following theorem.

Theorem 2.1. The limit of L(s, f ) at s = 1 exists if and only if
∑q

a=1 f (a) = 0.
When the function f satisfies this condition, we have

L(1, f ) = − 1

q

q∑

a=1

f (a)
�′

�

(
a

q

)

. (4)
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Remark 2.2. The necessary and sufficient condition for the existence of L(s, f ) at
s = 1 can also be obtained by partial summation formula. We proceeded in this
manner to obtain an expression of L(1, f ) whenever it exists.

For the remainder of the Section, we will assume that f is a Q-valued arithmetic
function with period q and

∑q
a=1 f (a) = 0.

2.2 Baker’s theory of linear forms in Logarithms

We start by mentioning the Lindemann Weierstrass theorem which helps us to observe
the transcendence of logarithms of algebraic numbers.

Theorem 2.3. If a1, . . . an are non-zero algebraic numbers and α1, . . . , αn are distinct
algebraic numbers then we have

a1eα1 + . . . aneαn �= 0.

Corollary 2.4. Let α ∈ Q, and α �= 0, 1. Then log(α) is transcendental.

Among the list of twenty three problems posed by Hilbert, the seventh question
asks about the transcendence of αβ given α �= 1 is non-zero algebraic number and β
is an algebraic irrational. This was proved in affirmative by Gelfond and Schneider
independently around 1934. In particular, the result states that the ratio of logarithms
of two non-zero algebraic numbers is either rational or transcendental. In his ground
breaking work, Baker had given a similar analogue. Following [6], we state the
qualitative version of Baker’s theorem on linear forms in logarithms.

Theorem 2.5. If α1, . . . , αm are non-zero algebraic numbers such that
log(α1), . . . , log(αm) are linearly independent over Q, then

1, log(α1), . . . , log(αm) are linearly independent over Q.

Remark 2.6. The above theorem holds for any branch of logarithm.

Using the above theorem, we illustrate a simple observation about linear forms in
logarithms of algebraic numbers over Q.

Lemma 2.7. If α1, . . . , αm and β1, . . . , βm are algebraic with αi non-zero, then the
sum

β1 log(α1)+ · · · + βm log(αm).

is either zero or transcendental.

The proof follows by induction on m. For m = 1, the theorem holds true by
Corollary 2.4. We assume that the lemma holds for m < n and does not hold for n
that is,

β1 log(α1)+ · · · + βm log(αm) = β0,

where β0 �= 0 and β0 ∈ Q
∗
. From Theorem 2.5, we note that log(α1), . . . , log(αm)

are linear dependent over Q. We obtain a contradiction by reducing the equation to
m < n by the cancellation of coefficients.
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2.3 Another expression of L(1, f ) and its transcendental nature

Now as shown in [1], we obtain another expression for L(1, f ) using fast Fourier
transform.

Definition 2.8. Let f be an arithmetic function of period q. The fast Fourier transform
of f is denoted by

f̂ (n) := 1

q

q∑

m=1

f (m)e−2π imn/q .

With the above definition, the authors [1] showed that,

∞∑

n=1

f (n)

n
= −

q−1∑

m=1

f̂ (m) log(1− e2π im/q). (5)

This is a linear form in logarithm of non-zero algebraic numbers with algebraic
coefficients, and hence should be zero or transcendental whenever f takes algebraic
values. Under the same conditions, we also have the following theorem.

Theorem 2.9. If
∑q−1

m=1 f̂ (m) log(1− e2π im/q) = 0 , then

q−1∑

m=1

σ( f̂ (m)) log(1− e2π im/q) = 0 for all σ ∈ Gal(Q/Q).

For proving the same, Baker, Birch and Wirsing [1] considered a maximal subset S
of {log(1− e2π im/q)}q−1

m=1, which is linearly independent over Q. Then, they apply the
Baker’s theorem on linear forms in logarithms of algebraic numbers to show that all
the coefficients of linear combinations of {αi}αi∈S are zero. The result is obtained on
applying the automorphism σ to these coefficients and rearranging the terms.

2.4 Decomposition using L(1, χ) for Dirichlet type functions

Definition 2.10. An arithmetic function f of period q is said to be of Dirichlet type if
f (a) = 0 whenever (a, q) > 1.

Moreover, for an arithmetic function f of period q, we say that f is odd if f (q−n) =
− f (n), and f is even if f (q − n) = f (n).

We state a decomposition result about the Dirichlet type functions.

Proposition 2.11. Let f be a Dirichlet type arithmetic function of period q satisfying∑q
a=1 f (a) = 0. Then L(1, f ) =∑

χ �=1 aχ L(1, χ) where χ runs over the non-trivial
characters modulo q. Moreover if f is odd (resp. even) then f can be written as a
linear combination of odd (resp. even) characters of modulus q.

Proof. If f (n) =∑
χ aχχ(n), then we have

L(s, f ) = a1ζ(s)+
∑

χ �=1

aχ L(s, χ).
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Since
∑q

a=1 f (a) = 0, we can evaluate L(s, f ) at s = 1, but since ζ(s) has a pole at
s = 1, we conclude that a1 = 0 as the limit of L(s, χ) at s = 1 exists by Theorem 2.1.
From the orthogonality relations we have,

∑

n

f (n)χ j (n) =
∑

n

∑

χ

aχχ(n)χ j (n) =
∑

χ

aχ
∑

n

χ(n)χ j (n) = φ(q)aχ j .

Hence L(1, f ) =∑
χ �=1 aχ L(1, χ). To prove the second part, suppose f is odd. Then

f (−n) = − f (n). Therefore

2 f (n) = f (n)− f (−n)

=
∑

χ even

aχ(χ(n))−
∑

χ even

aχ(χ(−n))+
∑

χ odd

aχ (χ(n))−
∑

χ odd

aχ(χ(−n)).

Hence f (n) =∑
χ odd aχχ(n) and this implies L(1, f ) =∑

χi odd ai L(1, χi).
A similar proof holds true when f is an even arithmetic function of period q. �

In the proof of the above Proposition, we can also see that if the values of f are
in a number field K , then the coefficients aχ belong to the field K (ζφ(q)) where ζn

denotes the primitive nth root of unity. Using this decomposition, we note that the
non-vanishing of L(1, f ) for odd Dirichlet type function f depends on the linear
relation of the values of Dirichlet L functions L(1, χ) where χ is an odd Dirichlet
character. We end by mentioning the expressions of L(1, χ) for even and odd
characters respectively. Throughout, we set ζN = e2π i/N .

2.5 Value of the Dirichlet L function at s = 1

For a Dirichlet character χ mod N , we denote the Gauss sum as

τ (χ) =
N∑

a=1

χ(a)ζ−a
N .

It is a standard result that for a primitive character χ of conductor N , we have |τ (χ)| =√
N . We follow [29] for the explicit expression of L(1, χ).

Theorem 2.12. Let χ be a non-principal primitive Dirichlet character of conductor N.
We then have:

L(1, χ) =
⎧
⎨

⎩

π i τ(χ)N B1,χ if χ(−1) = −1,

− τ(χ)N

∑N−1
a=1 χ(a) log |1− ζ a

N | if χ(−1) = 1,
(6)

where the generalised Bernoulli number B1,χ is given by the following expression.

B1,χ = 1

N

N∑

a=1

χ(a)a.

Note that the non-vanishing of L(1, χ) for an odd character χ implies that B1,χ is
non-zero.
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3. The question of Chowla and the theorem of Baker, Birch and
Wirsing

We now proceed to the solution of Question 1.1 for odd rational valued arithmetic
functions f .

3.1 Chowla’s question

When f is odd of period 2, then f ≡ 0 and therefore L(1, f ) = 0. So the interesting
case is when the period of f is an odd prime. The question can be solved when f is
odd by using the cotangent function as mentioned in [16]. We record an alternate proof
with the following proposition. Before proceeding to the proof, we fix a generator g
of (Z/pZ)∗ and enumerate the characters of (Z/pZ)∗ as {χk}p−2

k=0 , such that

χk(g) = ζ k
p−1.

Proposition 3.1. Let p be an odd prime. The Gauss sums corresponding to the
Dirichlet character modulo p, {τ (χi)}p−2

i=0 form a basis of Q(ζp, ζp−1) over Q(ζp−1).

Proof. Let
∑

i aiτ (χi) = 0, for ai ∈ Q(ζp−1). After the substitution of τ (χi), we
obtain

p−1∑

j=1

⎛

⎝
p−2∑

i=0

aiχi ( j)

⎞

⎠ ζ
− j
p = 0.

Since {ζ i
p}p−1

i=1 is a basis of Q(ζp(p−1))/Q(ζp−1), we have

p−2∑

i=0

aiχi ( j) = 0, for all 1 ≤ j ≤ p − 1.

By the linear independence of characters, we have ai = 0 for all i and hence the Gauss
sums are linearly independent over Q(ζp−1). �

Proof of Question 1.1 for odd functions f . Since the Gauss sums {τ (χi)}p−2
i=0 form a

basis of Q(ζp, ζp−1)/Q(ζp−1) and B1,χ is a non-zero element of Q(ζp−1), from (6),
we note that the set {L(1, χ)/π i}χ odd is linearly independent over Q(ζp−1). Hence
by Proposition 2.11, we obtain the result. �

The above proposition was also observed by R Ayoub in [5]. However, with this
manipulation we avoid the expression of cot 2πn/p in terms of the Gauss sums.
Before proceeding to the main theorem of [1], we define the Dedekind determinant
and its evaluation. We refer the reader to [20] for the proof of Proposition 3.3 and
Theorem 3.4.

3.2 Dedekind determinant

Definition 3.2. Let G be a finite abelian group of order n and F : G → C be any
complex valued function on G. The determinant of the n × n matrix [F(xy−1)]x,y∈G

is called the Dedekind determinant.
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For a square matrix A with entries in a field K , let |A| denote its determinant. With
the same notations as above we have,

Proposition 3.3. Let F : G → K where K is a field of characteristic 0. Then,

(a) |[F(xy−1)]x,y∈G | =∏
χ∈Ĝ

(∑
x∈G χ(x)F(x)

)
,

(b) |[F(xy−1)− F(x)]x,y �=1| = ∏

χ �=1
χ∈Ĝ

∑
σ∈G χ(σ)F(σ ),

(c) If
∑
σ∈G F(σ ) = 0, then ,

|[F(xy−1)]x,y �=1| = |G|−1
∏

χ∈Ĝ
χ �=1

∑

σ∈G

χ(σ)F(σ ).

Here Ĝ denotes the character group of G.

3.3 The proof of Baker Birch and Wirsing

The theorem below answers to a more generalised version of Question 1.1 as
mentioned in [1].

Theorem 3.4. Let f be a non-zero arithmetic function of period q satisfying
f (n) = 0 whenever 1 < (n, q) < q, and that the cyclotomic polynomial �q(x) is
irreducible over Q( f (1), . . . , f (q)). Then L(1, f ) �= 0 whenever the sum converges.

The first condition enables us to write L(1, f ) as a linear form of �(a/q) + γ for a
coprime to q. Here γ denotes the Euler’s constant. The idea of the proof to construct
arithmetic functions fh(n) := f (hn) of same period q using automorphisms such that
L(1, fh) = 0. This is done using the second condition, we choose automorphisms
σ : ζq → ζ h

q fixing Q( f (1), . . . , f (q)) and apply Theorem 2.9. So, we get that
f (a) satisfies a system of equations of the form AX = 0, A is the coefficient matrix
�(ab/q)+γ where a and b varies over the co-prime residue classes modulo q. Hence
it would be enough to show the matrix is invertible for which we invoke the Dedekind
determinant. The non-vanishing of the determinant involves the non-vanishing of
L(1, χ). We label the following condition as (A) for the future references.

�q(x) is irreducible over Q( f (1), . . . , f (q)). (A)

4. Vanishing of periodic Dirichlet series at s = 1

Now let us consider some examples of vanishing of Dirichlet series L(s, f ) at
s = 1 for algebraic periodic functions f . We first analyze the two given conditions in
Theorem 3.4. In the case when the period is a prime, it was observed that L(1, f ) �= 0
for all non-zero rational valued functions f .
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Example 4.1. Consider the Dirichlet series

L(s, g) :=
(

1− p

ps

)2

ζ(s) where �(s) > 1.

Note that at s = 1, ζ(s) has a simple pole, and
(
1 − p

ps

)
has a zero. Hence, L(s, g)

has a zero at s = 1. We also observe that g is of period p2.

Alternatively, we see that the linear combination of all such Dirichlet series also vanish
at s = 1. Hence, one can ask the following question.

Question 4.2. Given an arithmetic function f of period N such that L(1, f ) = 0,
does there exist integers ki dividing N, and arithmetic functions gi of period N

ki
such

that

L(s, f ) =
∑

ki |N

(

1− ki

ks
i

)

L(s, gi), (7)

hold whenever �(s) > 1?

This was answered by T. Okada in [23]. We begin with the notations.

4.1 Notations

Let F(N) denote the set of arithmetic functions of period N with algebraic values.
For f ∈ F(N), we define R( f ) := ∑N

n=1 f (n) and we denote A(N) := { f ∈
F(N)|R( f ) = 0}. For a positive divisor d of N and g ∈ F

( N
d

)
, we define g(d) ∈

F(N) as follows:

g(d)(n) =
{

g(n/d) if d | n,
0 otherwise

.

Also we define g(d) ∈ F(N) as follows:

g[d](n) := g(n)− dg(d)(n).

We have L(s, g(d)) = d−s L(s, g) and L(s, g[d]) = (1 − d1−s)L(s, g). To obtain the
value at s = 1 for L(s, g[d]), we note the following,

lim
s→1

L(s, g[d]) = lim
s→1

1− d1−s

s − 1

(
(s − 1)L(s, g)

) = log(d)R(g).

Hence,

L(1, g[d]) = R(g) log d.

So if g ∈ A(N/d), then L(1, g[d]) = 0. Question 4.2 asks the converse. We now
proceed to the main result.



10 Abhishek T. Bharadwaj

Theorem 4.3. Suppose f ∈ F(N) satisfies condition (A). Then L(1, f ) = 0 if and
only if there exists gl ∈ A(N/ l) such that

f =
∑

l|N
g[l]

l ,

where l runs over all the prime divisors of N.

The proof of this theorem hinges on the construction of the Dirichlet type function
g and functions gl for each prime divisor l of N such that f = g +∑

l|N g[l]
l . Then

using Theorem 2.5, T. Okada [23] shows that g ≡ 0. In the process, he also showed
that g, gl and f have the same parity i.e. if f is odd (resp. even) then g, gl are also
odd (resp. even).

4.2 Odd functions satisfying L(1, f ) = 0

On examining the odd Dirichlet characters, the authors in [1] made a remark that we
require the condition (A). Indeed, this should be expected, as L(1, χ) is an algebraic
multiple of π whenever χ is odd. Since for q ≥ 5, we have more than one odd
character χ mod q, we can obtain a linear combination of odd Dirichlet characters χ ’s
of a fixed modulus q over Q (say f ) such that L(1, f ) = 0. The following example
was mentioned in [1].

Example 4.4. Consider the quadratic characters χ and χ ′ of conductors 3 and 4
respectively and consider the function f = 2χ −√3χ ′. Since

L(1, χ) = π

2
√

3
and L(1, χ ′) = π

3
,

it follows that L(1, f ) = 0.

In fact, a complete classification of the vanishing of the odd functions was made. They
proved the redundancy of condition (A) when f is not odd. More precisely,

Theorem 4.5. All algebraically valued functions f , periodic with period q, in which
L(1, f ) = 0 and f (a) = 0 for all 1 < (a, q) < q holds, are odd.

With the above theorem, they immediately deduce the linear independence of L(1, χ)
over Q as χ varies over non-trivial distinct primitive even characters.

Corollary 4.6. If χ1, . . . , χk are even characters for which the associated primitive
characters are distinct, then L(1, χ1), . . . , L(1, χk) are linearly independent over the
field of all algebraic numbers.

4.3 The odd and the even parts of L(1, f )

From Theorem 2.9, if we have L(1, f ) = 0, then L(1, fa) = 0 where fa(n) := f (an)
for all 1 ≤ a ≤ q with (a, q) = 1, provided condition (A) holds. In particular, if we
denote fe(n) := f (n)+ f (−n)

2 (referred as the even part of f ), then

L(1, f ) = 0 ⇒ L(1, fe) := L(1, f )+ L(1, fq−1)

2
= 0.
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Similarly, if we denote fo(n) := f (n)− f (−n)
2 (referred as the odd part of f ), we obtain

L(1, fo) = 0. It is natural to ask the same when we do not have any restrictions on f .
In [9], the authors proved the following:

Theorem 4.7. L(1, f ) = 0 if and only if L(1, fe) = 0 and L(1, fo) = 0.

5. A conjecture of Erdős and Okada’s Criterion

We begin by making a few preliminary observations on Conjecture 1.2. Let the period
q be an even number. For convergence, we need to have

∑q
a=1 f (a) = 0. But this is

not possible as
∑q

a=1 f (a) ≡ 1 mod 2. Hence the statement is vacuously true when
the period q is even.

When the period q is a prime, the question is the special case of the Chowla’s
problem mentioned in the Section 3, and hence the conjecture is true for this case.

T. Okada [22] had given a necessary and sufficient condition on f satisfying
condition (A) and such that L(1, f ) = 0. We start by mentioning some of the
notations used in the theorem.

5.1 Notations

Let

J = {a ∈ Z : 1 ≤ a ≤ q and (a, q) = 1},
L = {r ∈ Z : 1 ≤ r ≤ q and 1 < (r, q) < q}, L ′ = L ∪ {q}.

Let P denote the set of primes dividing q. For r ∈ L ′ and p ∈ P ,

ε(r, p) =
{
v p(q)+ 1

p−1 if v p(r) ≥ v p(q),

v p(r) otherwise .

5.2 Okada’s Theorem

T. Okada gave an equivalent criteria for L(1, f ) = 0 using the Baker’s theory of linear
forms in logarithms. He observed that for L(1, f ) = 0, f (1), . . . , f (q) has to satisfy
a set of homogeneous linear equations. More precisely,

Theorem 5.1. If �q(x) is irreducible over Q( f (1), . . . , f (q)), then L(1, f ) = 0
holds if and only if ( f (1), . . . , f (q)) is a solution of the following system of φ(q) +
t(q) homogeneous linear equations with rational coefficients

f (a)+
∑

r∈L

f (r)A(r, a) + f (q)

φ(q)
= 0 for a ∈ J,

∑

r∈L ′
f (r)ε(r, p) = 0 for p ∈ P,

where t(q) denotes the number of primes p dividing q.
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The numbers A(r, a) are rational numbers and are rather technical to state here.
We refer the reader to [22] for further details. Using the above theorem, we now state
a corollary which Okada had used to prove Conjecture 1.2 when the period is a prime
power or product of two primes.

Corollary 5.2. If f satisfies the above conditions, then

| f (a)| ≤
(

q − 1

φ(q)
− 1

)

M + 1

φ(q)
| f (q)| where M := max

r∈L
| f (r)|.

The corollary is proved by rearrangement of terms and using well known fact about
Euler Phi function namely,

∑
d|q φ(d) = q.

Corollary 5.3. If 2φ(q)+ 1 > q, then Conjecture 1.2 is true for q.

This is the case when q = p1 p2, and when q = pk . Hence Conjecture 1.2 is true
for prime powers and product of two primes. N. Saradha had improved this condition
in [28].

6. Variation of Okada Criterion

N. Saradha and R. Tijdeman [4] modified the first condition in Theorem 5.1.
We directly state their result using the same notations as mentioned earlier.

6.1 Modification of Okada’s Criterion

Proposition 6.1. Let M(q) := {∏k
i=1 pni

i : ni ≥ 0 and pi | q} and suppose f ∈ F(q)
satisfies condition (A). Then L(1, f ) = 0 if and only if

∑

m∈M(q)

f (am)

m
= 0 for every a with 1 ≤ a ≤ q, (a, q) = 1

and for all primes p | q,
q∑

r=1
(r,q)>1

f (r)ε(r, p) = 0.

Corollary 6.2. Let f ∈ F(q) be completely multiplicative, or multiplicative with
| f (pk)| < p − 1 for all prime divisors p of q and every positive integer k. Further
assume that f satisfies condition (A). Then L(1, f ) �= 0.

The authors also applied Okada’s criterion to investigate sums of the form

∞∑

n=0

(−1)n(αn + β)
(qn + s1)(qn + s2)

(8)

with α, β ∈ Q, s1, s2 ∈ Z.
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Theorem 6.3. Consider the sum above with |α| + |β| > 0. Let �2q be irreducible
over Q(α, β) and s1, s2 be distinct integers such that qn + s1, qn + s2 do not vanish
for n ≥ 0. Assume that α �= 0 if s1 ≡ s2 mod q. Then the sum is transcendental.

Remark 6.4. We note that the sum mentioned above can be written as L(1, f ) for
arithmetic function f of period 2q. Hence we need to consider the cyclotomic
polynomial �2q .

Meanwhile, M. Ram Murty and T. Chatterjee [2] also modified the second condition
mentioned in Theorem 5.1.

Theorem 6.5.
∑

b∈M(q)

( fb, χ0)

b
log b = 0 if and only if

∑

r∈L ′
f (r)ε(r, p) = 0 for p ∈ P,

where fb is the arithmetic function defined by fb(n) = f (bn) and for two functions
f, g ∈ F(q); ( f, g) denotes the inner product

( f, g) = 1

φ(q)

q∑

a=1
(a,q)=1

f (a)g(a).

The authors [3] also used Proposition 6.1 for a density theoretic approach to
Conjecture 1.2.

6.2 Density Theoretic Approach to Conjecture 1.2

Proposition 6.6. If Conjecture 1.2 is false for a periodic function f of period q with
q odd, then

1 ≤
∑

d|q
d≥3
d �=q

1

ϕ(d)
.

Using the above proposition the cases originally solved by Okada were retrieved.

Corollary 6.7. If q = pk or q = p1 p2, then Conjecture 1.2 is true for period q.

In addition, if we denote d(n) as the number of divisors of n, we have

Corollary 6.8. If the smallest prime factor of q is at least d(q), then Conjecture 1.2
is true for q.

Proof. Let l be the smallest prime factor of q. If Conjecture 1.2 is false, then

1 ≤
∑

d|q
d≥3

1

ϕ(d)
≤ 1

ϕ(l)

∑

d|q
d≥3
d �=q

1 = d(q)− 2

l − 1
.
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Here, we are assuming that q has at least two prime factors and we get d(q) − 2
because the sum runs over the proper divisors of q. Hence, we get a strict inequality.
Thus l < d(q). �

It was proved in the same paper that Conjecture 1.2 is true for at least 78%. The
functions of period q ≡ 1 mod 4. The bound was increased to 82% by higher
moments. However, a remark was made that we can find a small density of numbers q
which does indeed satisfy the condition mentioned in Proposition 6.6, and hence the
above methods is not sufficient to prove the conjecture. In a recent work, S. Pathak
[25] has shown that Conjecture 1.2 holds with “probability” 1.

7. A Question of Milnor

Throughout the Section, for an integer 1 < s ≤ n/2 with (s, n) = 1 we denote us as

us := ζ s
n − 1

ζn − 1
.

Milnor, in a private communication to K. G. Ramanathan, had raised the following
question about the multiplicative units of the cyclotomic Field Q(ζn):

Question 7.1. Does the units us along with ζn form a basis of a subgroup of the unit
group of Q(ζn)?

K. Ramachandra [27], along with giving a counter-example for the above question,
also gave a natural set of multiplicatively independent units. Following [17], let n =∏

i∈I pai
i and for each proper subset J ⊆ I , we define

n J :=
∏

i∈J

pai
i , ζJ = ζ n J

n .

Theorem 7.2. The units

vs =
∏

J⊆I
J �=I

1− ζ s
J

1− ζn
1 < s ≤ n/2 with (s, n) = 1

are multiplicatively independent and the group generated by these units form a
subgroup of finite index over the full group of units of the ring of integers of Q(ζn).

Dedekind determinant was used to prove that the units are multiplicatively
independent. Using these units, the following theorem was proved in [18].

Theorem 7.3. For a fixed q > 1, the elements L(1, χ) where χ runs over all the
non-trivial even characters modulo q are linearly independent over Q.

Milnor also conjectured that

Conjecture 7.4. All the multiplicative relations of the numbers {1 − ζ
j

n }n−1
j=1 are

consequences of the following two relations:

1− ζ−1
k = −ζ−1

k (1− ζk), (9)

1− ζ k
n =

∏

ηk=1

(1− ζη). (10)
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The above conjecture was made precise by H. Bass [7], and soon Ennola [13] gave a
counter-example of the same. However, he had shown that the above conjecture is true
“upto a factor of 2”. Coming back to the case on the non-vanishing of L(1, f ) when f
is an even function, L(1, f ) is a linear combination of logarithms of algebraic numbers
|1 − ζ i

q |. A more recent paper of Chatterjee, et al. [9] gives another classification of
the same for even functions f such that L(1, f ) = 0 using the above result.

8. Conjecture 1.2 for the case q ≡ 3 mod 4

Before proceeding to the proof, we note if αi are multiplicatively independent positive
real numbers, then by Theorem 2.5, the numbers π and logαi are linearly independent
over Q. When we express L(1, f ) as linear combination of logarithms, it is possible
to find the coefficient of π using the fast Fourier transform.

Theorem 8.1. Let f : Z/qZ → Q be an algebraic valued function which is
not identically zero, and ζq a primitive q-th root of unity. Further suppose that∑q

a=1 f (a) = 0. If

f (q)

2q
+ 1

q

q−1∑

b=1

f (b)

1− ζ b
q
�= 0, (11)

then L(1, f ) is transcendental.

If f is an arithmetic function of period q taking algebraic values, and also satisfies∑q
a=1 f (a) = 0, then

L(1, f ) = S f π i +
∑

i

ai logαi ,

where αi are positive real numbers, and S f denotes the expression mentioned in (11).
We record the proof of Conjecture 1.2 for the case of 3 mod 4 as mentioned in

[21]. The crux of the proof is to observe that the coefficient of π doesn’t vanish for
Erdősian functions by using the congruence conditions. However, one should also
note that the non-vanishing of π is not a necessary condition for non-vanishing of
L(1, f ). A simple example to see this is to construct an even function f . Assume
q = 5 f (5) = 0, f (1) = f (4) = 1, f (2) = f (3) = −1. The sum mentioned in (11)
is 0, but by Theorem 3.4, we know that L(1, f ) �= 0.

Theorem 8.2. Conjecture 1.2 is true when q ≡ 3 mod 4.

Proof. Let us denote the sum in (11) as S. We show that S �= 0. Consider the sum qS
and K = Q(ζq). As qS is an element of the ring of integers OK of K , we note that

qS ≡ q
q−1∑

b=1

1

1− ζ b
q

mod 2OK .

So it suffices to show that

q
q−1∑

b=1

1

1− ζ b
q
�= 0 mod 2OK .
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By logarithmic differentiation of the expression

q−1∑

i=0

xi =
q−1∏

b=1

(x − ζ b
q ).

and substituting x = 1, we obtain

q−1∑

b=1

1

1− ζ b
q
= q − 1

2
.

If q ≡ 3 mod 4, then the above sum is 1 mod 2OK and hence the theorem is proved.
�

Remark 8.3. We can replace the above cyclotomic computation by a ‘parity’ argument
in the following way: for every pair of elements q

1−ζ k
q

and q
1−ζ−k

q
, we replace it

ak

1− ζ k
q
+ a−k

1− ζ−k
q
≡ q

1+ ζ k
q

1− ζ k
q

mod 2OK ≡ 1 mod 2OK . (12)

In the above ak, a−k ∈ {±q}. Since there are only q−1
2 elements

1+ζ k
q

1−ζ k
q

, we obtain

S ≡ 1 mod 2OK .

We end the section by proving some new results by appealing to elementary results
from cyclotomic fields.

8.1 Some Supplementary results

We note that 1/(1 − ζp) is not an algebraic integer and p/(1 − ζp) ∈ Z, the ring of
algebraic integers. We also recall that if n has at least two odd distinct prime factors,
then for (a, n) = 1, (1+ ζ a

n )/(1− ζ a
n ) ∈ Z.

Proposition 8.4. Let n be an odd squarefree number greater than 1 and
f : Z/nZ→ Z be an odd function. For every divisor d of n, d �= n, we set

αd :=
[n/2d]∑

i=1
(i, n

d )=1

f (di)
1+ ζ di

n

1− ζ di
n
.

If αn/p /∈ Z for some prime p dividing n, then L(1, f ) �= 0.

Proof. Since αn/p /∈ Z for some prime p dividing n, we note that n/p(αn/p) /∈ Z as
(n/p, p) = 1. Therefore,

n

p
L(1, f ) = n

p

π i

n

[n/2]∑

a=1

f (a)
1+ ζ a

n

1− ζ a
n
= π i

n

( n

p

( ∑

k|n
k �=p

αn/k

)
+ n

p
αn/p

)
.

Note that n/p(αn/p) /∈ Z̄ and n/p(αn/k) ∈ Z̄ for all k|n, k �= p. Therefore,
L(1, f ) �= 0. �
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Remark 8.5. The above proposition can be extended to all natural numbers n by
replacing the condition αn/p /∈ Z with the following condition: there exists a prime

p | n such that
∑v p(n)

k=1 αn/pk /∈ Z. Here v p(n) denotes the highest power of p
dividing n.

The above proposition can be applied to construct odd Erdősian functions f such
that L(1, f ) �= 0. The following notion would be convenient for our future purpose.

Definition 8.6. An algebraic number α ∈ Q(ζn) is said to be Erdősian if α can be
expressed as

[n/2]∑

i=1

ai
1+ ζ i

n

1− ζ i
n
,

where ai ∈ {±1}. We say that α is Erdősian number of level n, if n is the smallest
integer for which the above expression holds. If such a number is also an algebraic
integer, then we call it an Erdősian integer of level n.

In fact, given a prime number p, there exists Erdősian numbers in Q(ζp) which are

not algebraic integers. Indeed, given an Erdősian integer α =∑ p−1
2

i=1 ai(1+ ζ i
p)/(1 −

ζ i
p) of level p, there exists at least (p−1)/2 combinations α−2sgn(ai)(1+ ζ i

p)/(1−
ζ i

p) which are not algebraic integers. Here sgn(x) denotes the sign function. For the
sake of brevity, we didn’t include the higher powers in the above calculation. But
however, it is not immediately clear that Erdősian integers of level p exist. We invoke
a lemma which helps us in constructing such numbers.

Lemma 8.7. Let p be a prime. We can express
1+ζp
1−ζp

as the following:

1+ ζp

1− ζp
= −1− 2

p

p−1∑

i=1

iζ i
p. (13)

Proof. Since {ζ i
p}p−1

i=1 form a normal basis of Q(ζp) over Q, we write

1

1− ζp
=

p−1∑

i=1

aiζ
i
p. (14)

Moreover, we obtain

ζp

1− ζp
= 1

1− ζp
− 1 =

p−1∑

i=1

(ai + 1)ζ i
p.

Therefore, we have another expression for (14) namely

1

1− ζp
=

p−2∑

i=1

(ai+1 − 1)ζ i
p + (a1 + 1) =

p−2∑

i=1

(ai+1 − a1)ζ
i
p − (a1 + 1)ζ p−1

p . (15)
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Comparing the coefficients of (14) and (15), we have

ai = ai+1 − a1 for all 1 ≤ i ≤ p − 2 and ap−1 = −a1 − 1. (16)

From the above, we obtain ai = ia1 for all 1 ≤ i ≤ p− 1 and substituting in (16), we
obtain a1 = −1

p and therefore ai = −i
p . Hence, we have

1

1− ζp
= −1

p

p−1∑

i=1

iζ i
p.

We get the lemma by noting that
1+ζp
1−ζp
+ 1 = 2 1

1−ζp
. �

Moreover, applying the automorphism ζp → ζ
j
p , on (13) we obtain,

1+ ζ j
p

1− ζ j
p

= −1− 2

p

p−1∑

i=1

(i j−1|p)ζ i
p, (17)

where (x |p) denotes the representative of x mod p in the set {1, 2, . . . , p}. Hence we
have the following result:

Proposition 8.8. Let ai ∈ Z. Then
∑p−1/2

i=1 ai
1+ζ i

p

1−ζ i
p

is an algebraic integer if and only

if
∑

i ai(i−1|p) ≡ 0 mod p.

We end by using the above proposition to prove that there exists algebraic integers
of the above form for p > 5, p not a Fermat prime. For p = 3, 5, there does not exist
any Erdősian integer of level p. Hence by Proposition 8.4, Conjecture 1.2 is true for
odd arithmetic functions f of squarefree period n having 3 or 5 as a prime divisor.

Lemma 8.9. Let p be a prime number which is not a Fermat prime. There exists an
Erdősian integer of level p.

Proof. Let G := (Z/pZ)∗. Let H be a non-trivial subgroup of G such that |H | is odd.

Now consider S := ∑
[i]∈H

1+ζ i
p

1−ζ i
p
, where naturally for [i] ∈ H , ζ i

p means ζ k
p for any

representative k of [i]. Note that for j �= 1 and j ∈ H , we have
∑

i∈H

i =
∑

i∈H

ji = j
∑

i∈H

i ⇒
∑

i∈H

i = 0 mod p.

Hence by the above proposition, S is an algebraic integer. We associate G with
Gal(Q(ζp)/Q) and H is identified as a subgroup of G accordingly. Now note that for
ai ∈ Z, the sum α := ∑

[σi ]∈G/{±1}H aiσi (S) is an algebraic integer. For ai ∈ {±1},
the element α is an Erdősian integer of level p. �

9. Concluding remarks

(1) The non-vanishing of periodic Dirichlet series has been reduced to the linear
relations between the linear forms in logarithms of non-zero algebraic numbers.
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In order to prove Conjecture 1.2; Livingston had conjectured a linear independence
of {log 2 sin πa

q }q−1
a=1 over Q which was disproved by S. Pathak [24].

(2) Modifications of Conjecture 1.2 can be asked in general. For instance,
Conjecture 1.2 is not true if the last condition (that is f (n) = 0 for q | n) is
removed. Such a function f has been constructed by R. Tengeley for q = 36 and
a proof using Digamma function has been presented by Pilerud et al. [26].

(3) For p = 17, using SAGE, it was observed that there exists only 16 Erdősian
integers of level p, that is only one Erdősian integer up-to conjugate. We give its
explicit value below:

α =
8∑

i=1

ai
1+ ζ i

17

1− ζ i
17

where (a1, . . . , a8) = (1,−1,−1, 1, 1,−1,−1,−1).

The constructions in Lemma 8.9 was purely group theoretic and we expect a
similar construction to work for Fermat primes. However, the question about
counting Erdősian integers of level p upto conjugates seems to be hard at the
moment. It is however interesting to point out that for p = 13, we do not have any
Erdősian integer of level p which are of degree 12 over Q and all the Erdősian
integers of level p are of degree 4 over Q.

(4) The variant of Conjecture 1.2 when applied to integers k > 1 is true. Indeed, for
an Erdősian function f , we note that if we have

L(k, f ) =
∞∑

n=1

f (n)

nk
= 0 ⇒ 1+ | f (1)| ≤ ζ(k).

Then k < 2. Hence, this makes the question more interesting for the case k = 1.
(5) T. Okada had proved the equivalence of vanishing of L(1, f ) with the p-adic

L function L p(1, f ) for even periodic arithmetic functions f . The theme of
non-vanishing of Dirichlet series at s = 1 can be applied to other settings as
mentioned in [14] and [19].
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functions, Int. J. Number Theory., 15(7) (2019) 1449–1462.
[26] T. K. Pilerud and Kh. K. Pilerud, On a conjecture of Erdős, Mat. Zametki, 83(2) (2008)
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Abstract. The Selberg class of L-functions, S, introduced by A. Selberg in 1989, has
been extensively studied in the past few decades. In this article, we give an overview
of the structure of this class followed by a survey on Selberg’s conjectures and the
value distribution theory of elements in S. We also discuss a larger class of L-functions
containing S, namely the Lindelöf class, introduced by V. K. Murty. The Lindelöf class
forms a ring and its value distribution theory surprisingly resembles that of the Selberg
class.
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1. Introduction

The most basic example of an L-function is the Riemann zeta-function, which was
introduced by B. Riemann in 1859 as a function of one complex variable. It is defined
on �(s) > 1 as

ζ(s) :=
∞∑

n=1

1

ns
.

It can be meromorphically continued to the whole complex plane C with a pole at
s = 1 with residue 1. The unique factorization of natural numbers into primes leads
to another representation of ζ(s) on �(s) > 1, namely the Euler product

ζ(s) =
∏

p prime

(

1− 1

ps

)−1

.

The study of zeta-function is vital to understanding the distribution of prime numbers.
For instance, the prime number theorem is a consequence of ζ(s) having a simple pole
at s = 1 and being non-zero on the vertical line �(s) = 1.

In pursuing the analogous study of distribution of primes in an arithmetic
progression, we consider the Dirichlet L-function,

L(s, χ) :=
∞∑

n=1

χ(n)

ns
,

21
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for �(s) > 1, where χ is a Dirichlet character modulo q, defined as a group
homomorphism χ : (Z/qZ)∗ → C∗ extended to χ : Z → C by periodicity and
setting χ(n) = 0 if (n, q) > 1.

Attached to a number field K/Q, we have the Dedekind zeta-function defined for
�(s) > 1 as

ζK (s) :=
∑

a⊆OK

1

(NK/Q(a))s
,

where OK denotes the ring of integers of K and a runs over all non-zero ideals of OK .
All the above L-functions capture valuable information about the underlying

structure of the associated arithmetic objects. The general philosophy is to expect a
relation between “motivic” L-functions and automorphic L-functions. Such relations
are called reciprocity laws. One of the most significant reciprocity laws of today is the
modularity theorem (formerly known as the Taniyama-Shimura conjecture), which
associates to every elliptic curve over Q, a modular form through an L-function.
This must be viewed as a tip of the iceberg of the more challenging Langland’s
reciprocity conjecture. In an attempt to understand this theory, Selberg defined a
class of L-functions, S, which is expected to satisfy all familiar properties of an
automorphic L-function. His motivation was to study the value distribution of linear
combinations of L-functions in this class.

Since then, there has been significant progress in the study of the Selberg class.
An overview of the recent results and conjectures regarding the structure of S can
be found in several expositions, such as excellent surveys by A. Perelli [34], [33]
and J. Kaczorowski [15]. In this article, we outline some results and highlight certain
open problems and unexplored avenues for future study. The emphasis is on Selberg’s
conjectures and the value distribution theory of the Selberg class. The last section is
devoted to the Lindelöf class of L-functions M, defined by V. K. Murty [27]. This class
M is closed under addition and enjoys a richer algebraic structure than S. Moreover,
the value distribution theory of M closely resembles that of S.

2. The Selberg class

Definition 2.1. The Selberg class S consists of meromorphic functions F(s) satisfying
the following properties.

(1) Dirichlet series – It can be expressed as a Dirichlet series

F(s) =
∞∑

n=1

aF (n)

ns
,

which is absolutely convergent in the region �(s) > 1. We also normalize the
leading coefficient as aF (1) = 1.

(2) Analytic continuation – There exists a non-negative integer k, such that
(s − 1)k F(s) is an entire function of finite order.
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(3) Functional equation – There exist real numbers Q > 0, αi ≥ 0, complex
numbers βi for 0 ≤ i ≤ k and w ∈ C, with �(βi) ≥ 0 and |w| = 1, such that

�(s) := Qs
∏

i

�(αi s + βi)F(s) (1)

satisfies the functional equation

�(s) = w�(1− s).

(4) Euler product – There is an Euler product of the form

F(s) =
∏

p prime

Fp(s), (2)

where

log Fp(s) =
∞∑

k=1

bpk

pks

with bpk = O(pkθ ) for some θ < 1/2.
(5) Ramanujan hypothesis – For any ε > 0,

|aF (n)| = Oε(n
ε). (3)

The Euler product implies that the coefficients aF(n) are multiplicative, i.e.,
aF (mn) = aF (m)aF(n) when (m, n) = 1. Moreover, each Euler factor also has a
Dirichlet series representation

Fp(s) =
∞∑

k=0

aF (pk)

pks
,

which is absolutely convergent on �(s) > 0 and non-vanishing on �(s) > θ , where
θ is as in (2).

We mention a few examples of elements in S.

(i) The Riemann zeta-function ζ(s) ∈ S.
(ii) Dirichlet L-functions L(s, χ) and their vertical shifts L(s+iθ, χ) are in S, where

χ is a primitive Dirichlet character and θ ∈ R. Note that ζ(s+ iθ) /∈ S for θ 
= 0,
since it has a pole at s = 1− iθ .

(iii) For a number field K/Q, the Dedekind zeta functions ζK (s) is an element in S.
(iv) Let L/K be a Galois extension of number fields, with Galois group G. Let ρ :

G → GLn(C) be a representation of G. The associated Artin L-function is
defined as

L(s, ρ, L/K ) :=
∏

p∈K

det
(

I − (Np)−sρ(σq)
∣
∣
∣
V Iq

)−1
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where q is a prime ideal in L lying over prime ideal p in K , σq is the Frobenius
automorphism associated to q and V Iq is the complex vector space fixed by the
inertia subgroup Iq.
A conjecture of Artin states that for non-trivial irreducible representation ρ of
Gal(L/K ), the associated Artin L-function L(s, ρ, L/K ) is entire. If the Artin
conjecture is true, then these functions lie in the Selberg class.

(v) Let f be a holomorphic newform of weight k to some congruence subgroup
�0(N). Suppose its Fourier expansion is given by

f (z) =
∞∑

n=1

c(n) exp(2π inz).

Then its normalized Dirichlet coefficients are given by

a(n) := c(n)n(1−k)/2,

and the associated L-function given by L(s, f ) :=∑∞
n=1 a(n)/ns for �(s) > 1

is an element in the Selberg class. It is also believed that the normalized
L-function associated to a non-holomorphic newform is an element in the
Selberg class, but the Ramanujan hypothesis is yet to be proven in this case.

(vi) The Rankin-Selberg L-function of any normalized eigenform is in the Selberg
class.

3. Invariants in S

The constants in the functional equation (1) depend on F , and although the functional
equation may not be unique, we have some well-defined invariants, such as the degree
dF of F , which is defined as the finite sum

dF := 2
k∑

i=1

αi .

The factor Q in the functional equation gives rise to another invariant referred to as
the conductor qF , which is defined as

qF := (2π)dF Q2
k∏

i=1

αi
2αi . (4)

A natural question in this context is to understand how unique the functional
equation is for F ∈ S. Given a gamma-factor for F in S, one can produce new
gamma-factors using the Gauss-Legendre multiplication formula for the �-function,

�(s) = ms−1/2(2π)(1−m)/2
m−1∏

k=0

�

(
s + k

m

)

, (5)
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for any integer m > 2. One could also use the functional equation

�(z + 1) = z�(z) (6)

to produce new gamma-factors for F . It turns out that the functional equation of F ∈ S

is unique up to the transformations (5) and (6) (see [17]).
It is an interesting conjecture that both the degree and the conductor for elements

in the Selberg class are non-negative integers (see [9], [17]).

Conjecture 1. If F ∈ S, then dF and qF are non-negative integers.

There is recent progress towards the degree conjecture. In 1993, it was shown by
J. B. Conrey and A. Ghosh [9] that

Theorem 3.1 (Conrey-Ghosh). If F(s) ∈ S, then F = 1 or dF ≥ 1.

This was proved using the fact that any non-trivial element in the Selberg class must
satisfy a certain growth on σ + i t for σ < 0 and t sufficiently large. This growth
consequently is captured by the degree, which can be seen using the functional
equation.

Conrey and Ghosh [9] also conjectured that the functions of degree one in the
Selberg class are precisely given by the Riemann zeta-function ζ(s), Dirichlet
L-functions L(s, χ) and their shifts L(s + iθ, χ), where χ is non-principal primitive
and θ ∈ R. This conjecture was later proved by Kaczorowski and Perelli [16].
No such classification is known for the higher degrees in the Selberg class.

However, there are known examples of elements in the Selberg class with higher
degrees. Dedekind zeta-function attached to a number field K/Q has degree equal
to the degree of the field extension [K : Q]. L-functions associated to holomorphic
newforms (see Example v) have degree 2. Moreover, L-functions associated to
non-holomorphic newforms, if in the Selberg class, would also have degree 2. The
Rankin-Selberg L-function of normalized eigenforms are elements of the Selberg
class of degree 4.

For elements F ∈ S with dF > 1, it is significantly more difficult to show that dF

is an integer. In this direction, Kaczorowski and Perelli [20] established the following.

Theorem 3.2 (Kaczorowski-Perelli). For F ∈ S, if 1 ≤ dF < 2 then dF = 1.

The key ingredient in this result is the study of non-linear twists of L-functions. The
standard non-linear twist of a Dirichlet series F(s) =∑

n≥1 an/ns is defined as

Fd(s, α) =
∞∑

n=1

an

ns
e(−n1/dα),

where e(x) = e2π i x and α > 0 is a real number. Kaczorowski and Perelli studied the
generalization of such non-linear twists, replacing α with a real vector-valued function
f (�α). They showed that these non-linear twists can be written as a linear combination
of some familiar holomorphic functions to establish their result.

In general, we are far from showing any partial result on the elements of S with
degree > 2. We also do not know the complete classification of elements of S with
degree 2.
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4. Growth and number of zeros

For F ∈ S, the Euler product ensures that F(s) has no zeros on the right half plane
�(s) > 1. Using the functional equation, one gets a sequence of zeroes in the left
half plane �(s) < 0 corresponding to the poles arising from the �-factors. The more
interesting case is to understand the zero-distribution in the strip 0 < �(s) < 1. This
region is called the critical strip of an L-function in S. From the discussion above, it
is clear that for F ∈ S, the zeros of F(s) are concentrated in the critical strip. Due
to the symmetric nature of the functional equation, Riemann conjectured that all the
zeros of the ζ -function must lie on the 1/2-line. This is known as the famous Riemann
hypothesis and is considered to be one of the most challenging open questions in
number theory. The same statement is also expected to hold for elements in S. This
is often referred to as the generalized Riemann hypothesis or the grand Riemann
hypothesis.

Conjecture 2 (Generalized Riemann hypothesis). Let F ∈ S. If F(s) = 0 for
0 < �(s) < 1, then �(s) = 1/2.

Although we are far from proving the Riemann hypothesis, a lot is known about the
number of zeros of functions in S in the critical strip. In this direction, it is important
to discuss the growth of an L-function in vertical strips. For any analytic function,
counting the number of zeros in a region is often tackled by its values on the boundary
using Jensen’s theorem. Therefore, in order to capture the number of zeros of F(s) ∈ S

in the strip 0 < �(s) < 1 and |�(s)| < T , we need to understand the growth of
F(σ + i t) for σ fixed and t growing large. For F(s) ∈ S, define

μF (σ ) := lim sup
|t |→∞

log F(σ + i t)

log |t| .

We clearly have μF (σ ) = 0 for σ > 1. Moreover, on the left half plane σ < 0, μF (σ )
is obtained using the functional equation

F(s) = γ (1− s)

γ (s)
F(1− s),

where the gamma-factor is given by

γ (s) = Qs
k∏

j=1

�(α j s + β j ).

Applying Stirling’s formula, we get for t ≥ 1, uniformly in σ ,

γ (1− s)

γ (s)
=

(
αQ2tdF

)1/2−σ−i t
exp

(

i tdF + iπ(β − dF )

4

)(

ω + O

(
1

T

))

, (7)

where

α :=
k∏

j=1

α
2α j
j and β := 2

k∑

j=1

(1− 2β j ).
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Recall the Phragmén-Lindelöf theorem given by

Theorem 4.1 (Phragmén-Lindelöf). Let f (s) be analytic in the strip
σ1 ≤ �(s) ≤ σ2 with f (s) exp (ε|t|). If

| f (σ1 + i t)|  |t|c1 and

| f (σ2 + i t)|  |t|c2,

then
| f (σ + i t)|  |t|c(σ ),

uniformly in σ1 ≤ σ ≤ σ2, where c(σ ) is linear in σ with c(σ1) = c1 and c(σ2) = c2.

Using the Phragmén-Lindelöf theorem and (7), we get the following upper bounds
on the growth of an element in S.

Proposition 4.2. Let F ∈ S. Uniformly in σ , as |t| → ∞,

F(σ + i t) ∼ |t|(1/2−σ )dF |F(1− σ + i t)|,
where dF denotes the degree of F. We also have

μF (σ ) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if σ > 1,

1
2 dF (1− σ) if 0 ≤ σ ≤ 1,

dF

(
1
2 − σ

)
if σ < 0.

Using the functional equation, it is possible to show that for F ∈ S,

dF = lim sup
σ<0

μF (σ )

1/2− σ . (8)

This gives a characterization of degree in terms of the growth of F(s) in the left half
plane �(s) < 0.

Lindelöf conjectured that the order of growth of the Riemann zeta-function is much
smaller than what the Phragmén-Lindelöf theorem gives. In fact, he predicted that
ζ(s) is bounded on σ > 1/2 (see [24]). This statement is known to be false. But, a
weaker version would state that μζ (1/2) = 0. In other words,

∣
∣
∣
∣ζ

(
1

2
+ i t

)∣
∣
∣
∣ |t|ε,

for any ε > 0. This is known as the Lindelöf hypothesis. Note that, the Phragmén-
Lindelöf theorem only implies that |ζ(1/2 + i t)| ε |t|1/4+ε for any ε > 0. Any
improvement on the constant 1/4 is called the phenomena of “breaking convexity”.
The best known improvement on this constant is replacing 1/4 with 9/56. This is due
to E. Bombieri and H. Iwaniec [8] using Weyl’s method of estimating exponential
sums, which was earlier incorporated by G. H. Hardy and J. E. Littlewood to attack
the same problem.
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A more general statement of the Lindelöf hypothesis on the Selberg class is given
by

Conjecture 3 (Generalized Lindelöf hypothesis). For F ∈ S and any ε > 0,
∣
∣
∣
∣F

(
1

2
+ i t

)∣
∣
∣
∣ |t|ε .

It is known due to Littlewood that the Riemann hypothesis implies the Lindelöf
hypothesis. By the same argument, one can show that the generalized Riemann
hypothesis implies the generalized Lindelöf hypothesis. Moreover, the Lindelöf
hypothesis itself has many interesting consequences. The most prominent one is in
the context of value distribution of L-functions.

For F ∈ S, let NF (σ, T ) denote the number of zeros of F(s) in the region

{
s ∈ C : �(s) > σ, |�(s)| < T

}
.

The Lindelöf hypothesis for Riemann zeta-function implies the density hypothesis,
which states that for σ > 1/2,

Nζ (σ, T ) T 2(1−σ ).

In case of the Selberg class, the generalized Lindelöf hypothesis implies a statement
regarding the zero-distribution of L-functions, which we call the zero hypothesis. The
classical result on zero density estimate due to Bohr and Landau [6] states that most
of the zeroes of ζ(s) are clustered near the 1/2-line, i.e.,

Nζ (σ, T ) T 4σ (1−σ )+ε, (9)

for σ > 1/2. More recently, we have the following density theorem due to
Kaczorowski and Perelli [19] for the Selberg class.

Theorem 4.3 (Density theorem). For F ∈ S,

NF (σ, T )ε T c(1−σ )+ε,

for σ > 1/2 and c = 4dF + 12.

The above zero-density estimate suggests that the number of zeros close to the
vertical line �(s) = 1 is very small. In general, we formulate the zero hypothesis,
which claims that for F ∈ S all the zeros are clustered near the 1/2-line.

Conjecture 4 (Zero hypothesis). For F ∈ S, there is a positive constant c such that for
σ > 1/2,

NF (σ, T ) T 1−c(σ−1/2)+ε .

Using Riemann-von Mongoldt-type formula, it is possible to count the number of
zeros of F ∈ S more precisely. (see [35])
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Proposition 4.4. For F ∈ S, we have

NF (0, T ) = dF

π
T log T + cF T + O(log T ), (10)

where dF is the degree of F and cF is a constant depending on F.

Thus, we get another characterization of degree for F ∈ S using the number of
zeros of F in the critical strip. We have for F(s) ∈ S

dF = lim sup
T→∞

NF (0, T )

T log T
π. (11)

In the above proposition, we could replace counting zeros with counting any
a-value and get the exact same result. Define

N(F, a, T ) := #{F(s) = a : 0 < �(s) < 1, |�(s)| < T },
counted with multiplicity. Then, we have

N(F, a, T ) = dF

π
T log T + cF T + O(log T ).

5. Selberg’s Conjectures

The elements in the Selberg class are not closed under linear combination. But, the
Selberg class is closed under multiplication and forms a semi-group with respect to
multiplication i.e., if F,G, H ∈ S, then FG ∈ S and F(G H) = (FG)H . The
fundamental elements with respect to multiplication in S are called the primitive
elements.

Definition 5.1. F ∈ S is said to be a primitive element if any factorization F = F1F2

with F1, F2 ∈ S implies that either F1 = 1 or F2 = 1.

In other words, an element in S is primitive if it cannot be further factorized into
non-trivial elements in S. Using the characterization of degree in (11), we have that if
F ∈ S has a factorization F = F1F2, with F1, F2 ∈ S, then

N(T , F) = N(T , F1)+ N(T , F2).

Taking T →∞, we conclude that

dF = dF1 + dF2 .

We also know from Theorem 3.1 that non-trivial elements in S cannot have degree
< 1. Therefore, we cannot factorize an element F ∈ S indefinitely.

Proposition 5.2. Every element F ∈ S can be factorized into primitive elements in S.

It is still unknown whether the above factorization is unique.
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Conjecture 5 (Unique factorization in S). Every element F ∈ S can be uniquely
factorized into primitive elements.

From the above discussion, it is clear that every element F ∈ S with degree dF = 1
is a primitive element. Thus, the Riemann zeta-function and Dirichlet L-functions are
all primitive elements in the Selberg class. We know very little about the primitive
elements of higher degrees. In [29], M. R. Murty showed that if π is an irreducible
cuspidal representation of GL2(AQ), then L(s, π) is primitive if the Ramanujan
conjecture is true.

Selberg’s conjectures claim that distinct elements in S do not interact with each
other. Vaguely speaking, distinct primitive elements are orthogonal to each other.

Conjecture 6 (Selberg’s conjectures). In [35], Selberg made the following conjectures.

(1) Conjecture A – Let F ∈ S. There exists a constant nF such that

∑

p≤x

|aF (p)|2
p

= nF log log x + O(1). (12)

(2) Conjecture B – Let F,G ∈ S be primitive elements. Then

∑

p≤x

aF (p)aG(p)

p
=

⎧
⎨

⎩

log log x + O(1), if F = G,

O(1) otherwise.

Conjecture B is known as the Selberg’s orthogonality conjecture.
It is easy to verify Conjecture A in particular cases. For instance, Conjecture A

clearly holds for the Riemann zeta-function and Dirichlet L-functions. Conjecture
B can also be verified in the case of Dirichlet L-functions using the orthogonality
relations for characters.

In view of Proposition 5.2, it is easy to see that Conjecture B implies Conjecture A.
Indeed, if F ∈ S has a factorization into primitive elements given by

F(s) = F1(s)F2(s) · · · Fm(s),

where Fk(s) is primitive for all 1 ≤ k ≤ m, then,

∑

p≤x

|aF (p)|2
p

=
∑

1≤ j≤k≤m

∑

p≤x

aFj (p)aFk (p)

p
.

By Conjecture B, the above sum is of the form

m log log x + O(1),

where m is the number of factors in the factorization of F(s) into primitive elements.
Selberg [35] noted that there are connections between these conjectures and several

other conjectures like the Sato-Tate conjecture, Langlands conjectures etc. It is not
difficult to see that Conjecture B implies unique factorization in S. This was perhaps
known to Selberg, but was shown in the work of J. B. Conrey and A. Ghosh [9].



On the Selberg Class of L-Functions 31

Proposition 5.3. Conjecture B implies that every element F ∈ S has unique
factorization into primitive elements.

Proof. Suppose F ∈ S has two different factorizations into primitives, say,

F(s) =
m∏

j=1

Fj (s) =
r∏

k=1

Gk(s).

We can further assume that no Fj is same as Gk . Since

m∑

j=1

aFj (p) =
r∑

k=1

aGk (p),

multiplying both sides by aF1(p)/p and summing over p ≤ x , we get

m∑

j=1

∑

p≤x

aFj (p)aF1(p)

p
=

r∑

k=1

∑

p≤x

aGk (p)aF1(p)

p
. (13)

Now, Conjecture B implies that the LHS of (13) is unbounded where as the RHS is
bounded as x tends to infinity, which leads to a contradiction. �

By a similar argument as above, we also conclude the following.

Proposition 5.4. An element F ∈ S is a primitive element if and only if nF = 1, where
nF is given by (12).

In [28], M.R. Murty proved that Conjecture B implies Artin’s conjecture.

Theorem 5.5 (M. R. Murty). For any irreducible representation ρ of Gal(L/K ) of
degree n, the Artin L-function L(s, ρ, L/K ) is entire if Conjecture B holds.

In fact, he showed something stronger. Langland’s reciprocity conjecture states
that for any irreducible representation ρ of Gal(L/K ) of degree n, there exists
an irreducible cuspidal automorphic representation π of GLn(AQ), such that
L(s, ρ, L/K ) = L(s, π). Since L(s, π) are known to be entire, Artin’s conjecture is
a consequence of this statement. In [28], M. R. Murty showed that if K/Q is solvable,
then Conjecture B implies Langlands reciprocity conjecture.

In this direction, M. R. Murty [29] initiated the study of Selberg’s conjectures over
number fields. For any number field K , the idea is to consider functions, given by

F(s) =
∑

n⊂OK

an

N(n)s
(14)

on �(s) > 1, where n runs over all non-zero integral ideals of K . The expected
functional equation and the Euler product were modified analogously. This new class
of functions denoted SK could be considered as the Selberg class over a number
field K . It is not difficult to see that SK is a subset of S. He introduced the notion of
K -primitives in SK analogous to the primitive elements in S and made conjectures
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analogous to the Selberg’s conjectures for SK discussing its applications to Langland’s
conjectures (see [29]). This front of study seems to have a lot of potential for future
exploration.

There are many more interesting consequences of Conjecture B. Using a similar
argument as in Proposition 5.3, one can prove that the Conjecture B implies that if
F ∈ S has a pole at s = 1, it must come from the Riemann-zeta function. More
precisely,

Lemma 5.6. If F(s) ∈ S has a pole of order m at s = 1, then Conjecture B implies
that F(s) = ζ(s)m L(s), where L ∈ S.

Proof. Since Conjecture B implies unique factorization into primitive elements in S,
it suffices to show that if F ∈ S is a primitive element with a pole at s = 1, then
it is ζ(s). From Proposition 5.4 we know that nζ = 1 and nF = 1. If F 
= ζ , then
Conjecture B implies that

∑

p≤x

aF(p)

p
 1,

which is a contradiction. �

This expectation that every pole comes from ζ(s) can be thought of as the
amelioration of Dedekind’s conjecture, which states that every Dedekind zeta-function
ζK (s) must factorize through ζ(s).

The Selberg class is designed to model the class of L-functions satisfying the
Riemann hypothesis. So, one might ask whether the analogue of prime number
theorem is true for the elements in S. Recall that the prime number theorem for
natural numbers follows from the fact that ζ(s) does not vanish on the vertical line
�(s) = 1. It was shown by Kaczorowski and Perelli [19] that prime number theorem
for any F ∈ S is equivalent to the non-vanishing of F(s) on �(s) = 1. Thus, one can
formulate the prime number theorem in the Selberg class as follows.

Conjecture 7 (Generalized prime number theorem). If F ∈ S, then F(s) 
= 0 for
s = 1+ i t for any t ∈ R.

This is still open. But, the above conjecture can be shown assuming Conjecture B.
In fact, Kaczorowski and Perelli [19] proved the Conjecture 7 with an assumption
weaker than Conjecture A. This weaker assumption is often called the normality
conjecture, which is similar to Conjecture A, but with a weaker error term. Here, we
present an argument showing that Conjecture B implies Conjecture 7. We use the
following lemma.

Lemma 5.7. If F ∈ S has a pole or a zero at s = 1+ iθ for θ ∈ R, then

∑

p≤x

aF (p)

p1+iθ

is unbounded as x tends to∞.
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Proof. If F(s) has a pole or zero of order m 
= 0 at 1+ iθ , then we have

F(s) ∼ c(s − (1+ iθ))m,

near 1+ iθ . Writing s = σ + i t and taking log, we get

log F(s) ∼ m log(σ − 1)

near s = 1+ iθ . Moreover, from the Euler product, we have for σ > 1,

log F(s) =
∑

p

aF (p)

ps
+ O(1).

Thus, we get
∑

p

aF (p)

ps
∼ m log(σ − 1),

as σ → 1+. Assume the function

S(x) =
∑

p≤x

aF (p)

p1+iθ

is bounded. Then, we have

∑

p

aF (p)

ps
=

∫ ∞

1
x1−σ dS(x)

= (σ − 1)
∫ ∞

1
S(x)x−σ dx  1,

which is a contradiction. �

We are now ready to prove the following proposition.

Proposition 5.8. Conjecture B implies Conjecture 7.

Proof. Since Conjecture B implies unique factorization, it is enough to show the
non-vanishing of F(s) on �(s) = 1 for primitive elements F ∈ S. Since ζ(s) does
not vanish on �(s) = 1, using Lemma 5.6, we can further assume that F(s) is entire.
This implies that F(s + iα) ∈ S for any α ∈ R.

Now, if F has a zero at s = 1+ iθ , Lemma 5.7 implies that

∑

p≤x

aF (p)

p1+iθ

is unbounded as x →∞. But the Conjecture B applied to ζ(s) and F(s + iθ) yields

∑

p≤x

aF(p)

p1+iθ
 1,

which leads to a contradiction. �
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It was observed by Selberg in [35] and Bombieri-Hejhal in [7] that distinct elements
in the Selberg class are linearly independent. For an explicit argument, the reader may
refer to [10, Lemma 3.5.5]. A natural question that arises is whether distinct primitive
elements in S are algebraically independent. G. Molteni [26] showed that this is a
consequence of Conjecture B.

Proposition 5.9. Conjecture B implies that distinct primitive elements in S are
algebraically independent.

Proof. Selberg’s orthonormality conjecture implies that the factorization into
primitive elements in the Selberg class is unique. Suppose, F1, F2, . . . , Fn are
distinct primitive elements in S satisfying a polynomial P(x1, x2, . . . , xn) ∈
C[x1, x2, . . . , xn]. By linear independence of distinct elements in S, we conclude that
not all terms in the polynomial expansion of P(F1, . . . , Fn) are distinct. Thus, we
have relations of the form

Fa1
1 Fa2

2 . . . Fan
n = Fb1

1 Fb2
2 . . . Fbn

n , (15)

where not all the ai ’s are the same as the bi ’s. But, both the left hand side and the
right hand side in (15) are elements in the Selberg class. This contradicts the unique
factorization. �

6. Uniqueness results for elements in S

Selberg’s orthogonality conjecture implies that for F,G ∈ S, if aF (p) = aG(p) for
all but finitely many primes p, then F = G. Such uniqueness results are called strong
multiplicity one theorems for the Selberg class. Unconditionally, it was shown by M.
R. Murty and V. K. Murty [30] that

Theorem 6.1 (Murty-Murty). For F,G ∈ S, if aF(p) = aG(p) and aF (p2) =
aG(p2) for all but finitely many primes p, then F = G.

As an immediate consequence, we have that if F,G ∈ S satisfy the property that
the Euler factors Fp(s) = G p(s) for all but finitely many primes p, then F = G. It is
expected that the condition aF (p) = aG(p) for all but finitely many primes p uniquely
characterizes the function in S. But a proof of this fact is still unknown. However, if
we further impose the condition that F(s) and G(s) have polynomial Euler product,
i.e. an Euler product of the form

F(s) =
∏

p

k∏

j=1

(

1− αp( j)

ps

)−1

,

with |αp( j)| < 1, then it was shown by J. Kaczorowski and A. Perelli [18] that for
F,G ∈ S if aF (p) = aG(p) for all but finitely many p, then F = G. It is worth noting
that the elements in the Selberg class are expected to have polynomial Euler product.
As a token of evidence, note that the Riemann zeta-function, Dedekind zeta-functions,
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Hecke L-functions, L-functions attached to holomorphic cusp forms and in fact all
automorphic L-functions have polynomial Euler product.

Another aspect to the uniqueness of elements in the Selberg class arises from the
a-value distribution. If F,G ∈ S take the same value at sufficiently many points in
the critical strip, then F = G.

For any two meromorphic functions f and g, we say that they share a value ‘a’
ignoring multiplicity if f −1(a) is same as g−1(a) as sets. We further say that f
and g share a value ‘a’ counting multiplicity if the zeroes of f (x) − a and g(x) −
a are the same with multiplicity. Nevanlinna theory [32] establishes that any two
meromorphic functions of finite order sharing five values ignoring multiplicity must
be the same. Moreover, if they share four values counting multiplicity, then one must
be a Möbius transform of the other. The numbers four and five are the best possible
for meromorphic functions.

One can get much stronger results for L-functions. For F,G ∈ S, define

DF,G(T ) =
∑

ρ

|m F(ρ)− mG(ρ)|,

where ρ runs over all the non-trivial zeroes of F and G with |�(ρ)| < T and
m F (ρ) denotes the order of the zero of F at ρ. Then, M. R. Murty and V. K. Murty
[30] showed that if DF,G(T ) = o(T ), then F = G. In other words, if F,G share
sufficiently many zeros counting multiplicity, then they must be the same. It is
possible to show the above result for any a-values.

Proposition 6.2. For F,G ∈ S, if F,G share a complex value ‘a’ counting
multiplicity for all but finitely many points, then F = G.

Proof. Since F and G have only one possible pole at s = 1, we define H as

H := F − a

G − a
Q,

where Q(s) = (s − 1)k p(s) is a rational function and p(s) a polynomial such that H
has no poles or zeros. Since, F and G have complex order 1, we conclude that H has
order at most 1 and hence is of the form

H(s) = ems+n .

This immediately leads to m = 0, since F and G are absolutely convergent on�(s) >
1 and taking s → ∞, F(s) and G(s) approach their leading coefficient 1. Similarly,
we also get Q(s) = 1. This forces

F(s) = cG(s)+ d.

for some constants c, d ∈ C. Since, F and G have leading coefficient 1, we conclude
that F = G. �

It is possible to prove stronger results than above using similar techniques used by
M. R. Murty and V. K. Murty in [30] to show that if F,G ∈ S satisfy DF−a,G−a(T ) =
o(T ), then F = G.
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In this context, a natural question of interest would be to investigate how many
values can two distinct elements in S share ignoring multiplicity. Clearly, F(s) and
F2(s) share zeros ignoring multiplicity. So the best one could expect is that F,G ∈ S

sharing two distinct values ignoring multiplicity must be the same. J. Steuding [36]
proved this with some extra conditions. In 2010, B. Q. Li [23] gave a proof dropping
the additional conditions.

Theorem 6.3 (B. Q. Li). Let a, b be two distinct complex numbers. If F,G ∈ S share
values a and b ignoring multiplicity, then F = G.

The main idea in such uniqueness results was to introduce Nevanlinna theory to the
study of value distribution theory. In a previous paper, B. Q. Li [22] also showed the
following.

Theorem 6.4 (B. Q. Li). Let F ∈ S and f be a meromorphic function with finitely
many poles. Suppose F and f share a value ‘a’ counting multiplicity and another
value ‘b’ ignoring multiplicity, then F = f .

For stronger versions of the above results, the reader may refer to [11]. One
can show all the above results by dropping the Euler product and the Ramanujan
hypothesis. The question still remains of how large can the error DF,G(T ) be. When
sharing values ignoring multiplicity, there is no known satisfactory answer to this
question.

7. Limit theorems and universality

In the early twentieth century, Harald Bohr introduced geometric and probabilistic
methods to the study of the value distribution of the Riemann zeta-function. In this
section, the probabilistic methods will be of significance.

For the Riemann zeta-function ζ(s), we know that if σ0 > 1, then

|ζ(s)| ≤ ζ(σ0)

in the right half plane �(s) ≥ σ0. In other words, ζ(s) is bounded on any right half
plane�(s) > 1+ε. The natural question to consider is what happens as σ0 approaches
1 from the right. In this regard, Bohr [2] proved that in any strip 1 < �(s) < 1 + ε,
ζ(s) takes any non-zero complex value infinitely often. The main tool used by Bohr
was the Euler product of ζ(s). Similar study in the critical strip is much more difficult.
To tackle this problem, Bohr studied truncated Euler products

ζM(s) :=
∏

p≤M

(

1− 1

ps

)−1

.

The functions ζM(s) do not converge in the critical strip as M tends to∞. However,
Bohr showed that in the critical strip, for large M , ζM (s) approximates ζ(s) well in
the following sense.

∫ 2T

T

∫∫

D

∣
∣
∣
∣
ζ(s + iτ )

ζM (s + iτ )
− 1

∣
∣
∣
∣

2

dσ dt dτ  εT , for all ε > 0,
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where D := {s = σ + i t : 1/2 + δ < σ ≤ 2, |t| ≤ 1}. This remarkable idea plays a
key role in many interesting discoveries of Bohr.

In [3], Bohr showed that for any σ0 ∈ (1/2, 1), the image of the vertical line
{�(s) = σ0} given by {

ζ(s) : s = σ0 + i t, t ∈ R
}

is dense in C. Later, Bohr and Jessen [4], [5] improved these results using probabilistic
methods to prove the following limit theorem.

Theorem 7.1 (Bohr, Jessen). Let R be any rectangle in C with sides parallel to the
real and imaginary axis. Let G be the half plane {�(s) > 1/2} except for points
z = x + i y such that there is a zero of ζ(s) given by ρ = α + i y with x ≤ α. For any
σ > 1/2, the limit

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : σ + iτ ∈ G, log ζ(σ + iτ ) ∈ R

}

exists.

Here the measure is the usual Lebesgue measure. Later, Hattori and Matsumoto
[13] identified the probability distribution given by the above limit theorem. It is
reasonable to hope that Bohr-Jessen type results can be shown for general automorphic
L-functions.

In 1972, Voronin [38] proved the following generalization of Bohr’s limit theorem.

Theorem 7.2 (Voronin). For any fixed distinct numbers s1, s2, . . . , sn with
1/2 < �(s j ) < 1 for 1 ≤ j ≤ n, the set

{
(ζ(s1 + i t), . . . , ζ(sn + i t)) : t ∈ R

}

is dense in Cn. Moreover, for any fixed number s with 1/2 < �(s) < 1,
{
(ζ(s + i t), ζ ′(s), . . . , ζ (n−1)(s + i t)) : t ∈ R

}

is dense in Cn.

Analogous limit and density theorems for other L-functions were obtained by
Matsumoto [25], Laurinčikas [21], Šleževičienė [40] et al.

It is interesting to note that despite the density theorems, we do not understand
the value distribution of ζ(s) on �(s) = 1/2. A folklore, yet unsolved conjecture is
that the set of values of ζ(s) on �(s) = 1/2 is dense in C. In this direction, Selberg
showed that “up to some normalization” of ζ(s), the values on the 1/2-line satisfy the
Gaussian distribution (see Joyner [14]).

In 1975, Voronin [39] proved a fascinating theorem for the Riemann zeta-function,
which roughly says that any non-vanishing analytic function is approximated
uniformly by shifts of the zeta-function in the critical strip. This is called the Voronin’s
universality theorem. More precisely,
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Theorem 7.3 (Voronin). Let 0 < r < 1
4 and suppose that g(s) is a non-vanishing

continuous function on the disc {s : |s| ≤ r}, which is analytic in its interior. Then,
for any ε > 0,

lim inf
T→∞

1

T
meas

{

|τ | < T : max|s|<r

∣
∣
∣
∣ζ

(

s + 3

4
+ iτ

)

− g(s)

∣
∣
∣
∣ < ε

}

> 0.

After the result of Voronin, Bagchi [1] gave a proof of universality for the
Riemann zeta-function ζ(s) and some other L-functions using probabilistic methods.
Using Bagchi’s technique, the universality property for many L-functions has been
established, mainly due to the work of Laurančikas, Matsumoto, Steuding et al. In
particular, we know that the universality property holds for elements in the Selberg
class S satisfying a condition analogous to the prime number theorem (see [31]).

Theorem 7.4 (Steuding, Nagoshi). Let L(s) ∈ S with degree dL satisfying the
condition

lim
x→∞

1

π(x)

∑

p≤x

|aL(p)|2 = κL ,

where κL is a constant depending on L. Let K be a compact subset of the strip

1− 1

2dL
< �(s) < 1,

with connected complement. Suppose g(s) is any non-vanishing continuous function
on K , which is analytic in the interior of K . Then, for any ε > 0,

lim inf
T→∞

1

T
meas

{
|τ | < T : max

s∈K
|L(s + iτ )− g(s)| < ε

}
> 0

It is important to note that the L-functions for which the universality property
has been established is much larger than the Selberg class. In fact, L-functions such
as the Hurwitz zeta-function, Lerch zeta-function or Matsumoto zeta-functions are
all known to be universal in a certain strip. In view of this, Linnik and Ibragimov
conjectured the following.

Conjecture 8 (Linnik, Ibragimov). Let F(s) have a Dirichlet series representation,
absolutely convergent on �(s) > 1 and suppose F(s) can be analytically continued to
C except for a possible pole at s = 1 satisfying some “growth conditions”, then F(s)
is universal in a certain strip.

Although the universality property for elements in S is conditionally known, the
study is far from complete. In particular, for F ∈ S, the strip for which the universality
property has been established is given by 1 − 1/2dF < �(s) < 1. But the expected
strip of universality is 1/2 < �(s) < 1 (see [37], [10]). This is, in fact a consequence
of the Lindelöf hypothesis.

Another front to investigate is the following: for a given non-vanishing analytic
function g(s) on a compact subset K inside the strip of universality and a given ε > 0,
for what value of T0 is the universality property realized? In other words, how large
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must T0 be such that for any T > T0, F(s) approximates g(s) up to ε, δT number
of times, where δ > 0. Unfortunately, there are no known results in this direction. It
would be interesting to explicitly describe T when g is a polynomial or a Dirichlet
polynomial.

8. Lindelöf class: A generalization

Despite its generality, the Selberg class has several limitations. For instance, it is
not closed under addition. This is because of the rigidity of functional equation and
the Euler product. Thus, the zero distribution of linear combination of L-functions
in the Selberg class, which appears in the work of Bombieri and Hejhal [7] is not
addressed by studying the value distribution theory of elements in S. Moreover,
some naturally occurring L-functions such as the Hurwitz zeta-function or Lerch
zeta-function are not members of the Selberg class. Furthermore, functions such as
the Epstein zeta-function, which satisfy a functional equation of the Riemann-type
may not always have an Euler product and hence are not members of the Selberg
class. This motivated V. K. Murty [27] to introduce a larger class of L-functions
M which contains S, is closed under linear combination and also captures many
familiar L-functions, which are not in S. This new class M forms a ring and the value
distribution of elements in M is very similar to that of the Selberg class. In order to
define M, we start by introducing some growth parameters.

Let F(s) be an entire function of order ≤ 1, which is given by the Dirichlet series
F(s) =∑

n an/ns on �(s) > 1. Define μF (σ ) as

μF (σ ) :=

⎧
⎪⎨

⎪⎩

inf
{
λ ∈ R : |F(s)| ≤ (|s| + 2)λ, for all s with �(s) = σ

}
,

∞, if the infimum does not exist.

(16)

Also define:

μ∗F (σ ) :=

⎧
⎪⎨

⎪⎩

inf
{
λ ∈ R : |F(σ + i t)| σ (|t| + 2)λ

}
,

∞, if the infimum does not exist.

(17)

If F(s) has a pole of order k at s = 1, consider the function

G(s) :=
(

1− 2

2s

)k

F(s). (18)

Now define, μF (σ ) := μG(σ ) and μ∗F (σ ) := μ∗G(σ ). Intuitively, μ∗F (σ ) does not
see how F(s) behaves close to the real axis. It is only dependent on the growth of F(s)
on �(s) = σ and �(s)� T for arbitrary large T . On the other hand, μF (σ ) captures
an absolute bound for F(s) on the entire vertical line �(s) = σ . It follows from the
definition that

μ∗F (σ ) ≤ μF (σ )

for any σ .
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Definition 8.1. The class M. Define the class M (see [27, sec.2.4]) to be the set of
functions F(s) satisfying the following conditions.

(1) Dirichlet series – F(s) is given by a Dirichlet series

∞∑

n=1

aF (n)

ns
,

which is absolutely convergent in the right half plane �(s) > 1.

(2) Analytic continuation – There exists a non-negative integer k such that
(s − 1)k F(s) is an entire function of order ≤ 1.

(3) Growth condition – The quantity μF (σ )
(1−2σ ) is bounded for σ < 0.

(4) Ramanujan hypothesis – |aF (n)| = Oε(nε) for any ε > 0.

Examples of elements in M include Dirichlet polynomials, all Dirichlet series
which are convergent on the whole complex plane, all elements in the Selberg class
and their linear combinations, translates of Epstein zeta-functions etc. From the
observation (8), we define the following invariants for M, which would play the role
of degree in S.

Definition 8.2. For F ∈M, define

cF := lim sup
σ<0

2μF (σ )

1− 2σ
,

c∗F := lim sup
σ<0

2μ∗F (σ )
1− 2σ

.

By the growth condition, cF and c∗F are well-defined in M. Furthermore, these
invariants satisfy an ultrametric inequality. For F,G ∈M,

cFG ≤ cF + cG and cF+G ≤ max(cF , cG).

Similarly,
c∗FG ≤ c∗F + c∗G and c∗F+G ≤ max(c∗F , c∗G).

In fact, if cF > cG (resp. c∗F > c∗G), then

cF+G = cF (resp. c∗F+G = c∗F).

This ensures that M is closed under addition.
If F ∈ S, then cF = c∗F = dF . Since the degree in the Selberg class is conjectured

to be a non-negative integer, one may wonder if the same is expected to be true
for the invariants cF and c∗F in M. It turns out that cF can take non-integer values.
In fact, one can manufacture functions in M with any arbitrary non-negative value cF .
However, we expect c∗F to take non-negative integer values. In this direction, we have
the following partial result (see [27], [12]).

Proposition 8.3. Suppose F(s) ∈M. Then c∗F < 1 implies c∗F = 0.
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It is also possible to classify all elements with c∗F = 0. These are essentially given
by all Dirichlet series, which are convergent on the whole of C. There are many
more interesting algebraic properties of M. For instance, M is non-Noetherian. This
is interesting because C[S] is a subring of M and Selberg’s conjectures imply that
C[S] is non-Noetherian. Furthermore, the uniqueness result 6.3 and 6.4, and a weaker
version of the universality theorem 7.4 can be established for the class M. We refer
the reader to [10] for details.

One may wonder if there is some underlying topology on M. Perhaps, understanding
the geometry and learning to interpolate between L-functions may hold the key to
new discoveries in this fascinating field of mathematics.
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Abstract. In this article, we prove nonvanishing results for symmetric square
L-functions associated to primitive forms of integral weight on average (over an
orthogonal basis of Hecke eigenforms) inside the critical strip. This extends a result of
Kohnen and Sengupta to forms of level D > 1 (an odd fundamental discriminant) with
real primitive character modulo D.
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1. Introduction

Let N be any positive integer and χ be a primitive Dirichlet character modulo N .
We denote by Sk(N, χ) the space of cusp forms of weight k, level N and character χ .
When N = 1, we denote the space by Sk . Given a normalised Hecke eigenform
f in Sk , the L-function L( f, s) associated to f has an analytic continuation to the
whole complex plane and the completed L-function L∗( f, s) satisfies the functional
equation. More precisely, the functional equation of L∗( f, s) relates its value at s to its
value at k− s. The critical strip for such L-function is (k− 1)/2 < �(s) < (k+ 1)/2.
One of the classical problem regarding L-functions is to understand the nonvanishing
in the critical strip and the knowledge about the existence of zero-free region is a
question of great interest.

The Generalised Riemann Hypothesis (GRH) predicts that any zero of L( f, s)
in the critical strip actually lies on the critical line �(s) = k/2. For a given
L-function L( f, s), the GRH is an open problem. However, one naturally asks the
above question on an average (over an orthogonal basis of Hecke eigenforms).
In this direction, the nonvanishing of the average of L-functions inside the critical
strip is due to Kohnen [6]. It is worth noting that the work of Kohnen [6] has
been generalised to various L-functions associated to other types of modular
forms: L-functions associated to normalised Hecke eigenforms with arbitrary
level and primitive character with respect to both the level and weight aspect by
Raghuram [9], L-functions of cusp forms twisted by primitive Dirichlet character
by Schwagenscheidt [11], L-functions of half-integral weight cusp forms by
Ramakrishnan and Shankhadhar [10], Koecher-Maass series of Siegel cusp forms by

43
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Das and Kohnen [4], L-functions of half-integral weight cusp forms in the plus space
by Kohnen and Raji [8] and L-functions associated to Hilbert cusp forms by Hamieh
and Raji [5].

Given a normalised Hecke eigenform f in Sk(N, χ), one can define various
L-functions associated to f . The most commonly used L-function of degree 3 is
symmetric square L-function L(sym2 f, s). The aim of this article is to study the
nonvanishing of L(sym2 f, s) inside the critical strip. Before we state our theorems,
we fix the following notations.

Let D > 1, D ≡ 1 (mod 4) be a square-free integer, and χD =
( D
.

)
a real

primitive character modulo D and k > 2 an even integer. Since χD is primitive, we see
that the space Sk(D, χD) is the full space of newforms. Therefore, we can choose an
orthogonal basis of Sk(D, χD), denoted by Hk(D, χD) which consists of normalised
Hecke eigenforms for all Hecke operators. Let f ∈ Hk(D, χD) be a form with the
Fourier expansion

f (z) =
∞∑

n=1

λ f (n)e
2π inz.

For �(s) > 1, the symmetric square L-function associated to f is given by

L(sym2 f, s) =
∏

p

(1− α2
p p−s)−1(1− χD(p)αpᾱp p−s)−1(1− ᾱ2

p p−s)−1,

where the product runs over all primes and αp, ᾱp are defined by

αp + χD(p)ᾱp = λ f (p), αpᾱp = pk−1.

By the works of Shimura [12], Asai [3, p. 58, Corollary], the completed function (after
using the Legendre’s duplication formula for Gamma functions in [3, p. 58])

�(sym2 f, s) = Ds/22−sπ−3s/2�(s)�

(
s − k + 2

2

)

L(sym2 f, s) (1)

can be analytically continued to the whole complex plane and satisfies the functional
equation

�(sym2 f, s) = �(sym2 f, 2k − 1− s). (2)

In [7], Kohnen and Sengupta has obtained the nonvanishing of L(sym2 f, s)
associated to a normalised Hecke eigenform of level one in the critical region.
By using the methods of Kohnen and Sengupta, we prove the following theorem.

Theorem 1. Let D > 1 be an odd fundamental discriminant and t0 be a real number
and 0 < ε < 1

2 . Then there exists a positive constant C1 = C1(t0, ε) depending only
on t0 and ε such that for k > C1, the function

∑

f ∈Hk(D,χD)

1

〈 f, f 〉�(sym2 f, s)

does not vanish at any point s = σ + i t0, k− 1 < σ < k− 1
2 − ε, k− 1

2 + ε < σ < k.
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We also prove the following theorem which is an analogue of Sun’s result [13,
Corollary 1.2] where the nonvanishing of L(sym2 f, s) for the level aspect on the
critical line is obtained. However, we deduce the nonvanishing of L(sym2 f, s) in the
critical region but off the critical line.

Theorem 2. Let k > 6 be an even integer and t0 be a real number and 0 < ε < 1
2 .

Then there exists a positive constant C2 = C2(k, t0, ε) depending only on k, t0 and ε
such that for D an odd fundamental discriminant with D > C2, the function

∑

f ∈Hk(D,χD)

1

〈 f, f 〉�(sym2 f, s)

does not vanish at any point s = σ + i t0, k− 1 < σ < k− 1
2 − ε, k− 1

2 + ε < σ < k.

As a consequence of Theorem 1 and 2, we deduce the following corollary on the
nonvanishing of L(sym2 f, s) in the critical region with respect to the weight and level
aspect.

Corollary 3. Let s = σ + i t be a complex number fixed with k − 1 < σ < k, σ 	= k
2 .

If either weight k or level D is large enough where D > 1 runs over odd fundamental
discriminants then there exists a normalised Hecke eigenform f ∈ Hk(D, χD) such
that �(sym2 f, s) 	= 0.

In order to prove the above theorems, we basically use Zagier’s kernel and certain
analytic estimates. In the next section, we describe kernel function for L(sym2 f, s)
obtained by Zagier [14]. Then in the subsequent sections, we prove the theorems.

2. The kernel function for L(sym2 f, s)

In [14, Theorem 4, p. 153], Zagier constructed the kernel function for L(sym2 f, s),
where f is a normalised Hecke eigenform in Sk(D, χD) with D > 1 an odd
fundamental discriminant of a real quadratic field. To state the kernel function of
L(sym2 f, s), we need to define few notations.

Let 
 be a discriminant, that is, 
 ≡ 0, 1 (mod 4). If 
 	= 0 then we write

 = D0 f 2 with f ∈ N and D0 is the discriminant of Q(

√

). For �(s) > 1, we

denote by L D0(s) the associated L-function defined by analytic continuation of the

series
∑

n≥1

(
D0
n

)
n−s , where

(
D0
.

)
is the Kronecker symbol. For �(s) > 1, we put

L(s,
) =
{
ζ(2s − 1) if 
 = 0,

L D0(s)
∑

d| f,d>0 μ(d)
(

D0
d

)
d−sσ1−2s

(
f
d

)
if 
 	= 0,

where μ is the Möbius function and for m ∈ N, ν ∈ C, we have σν(m) =∑
d| f,d>0 dν .

Furthermore, for an integer t with 
 < t2 and s ∈ C with 1/2 < �(s) < k,
we define

Ik(
, t; s) = �
(
k − 1

2

)
�(1/2)

�(k)

∫ ∞

0

yk+s−2

(
y2 + i t y − 1

4

)k−1/2

dy
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where the above integral converges absolutely for 1 − k < �(s) < k if 
 	= 0. For

 = 0, ±t > 0 one has

Ik(0, t; s) = esign t · π i
2 (s−k)√π �(s − 1/2)�(k − s)

�(k)
|t|s−k . (3)

For the above function and its detailed properties, we refer to [14, Proposition 4,
p. 132]. Now we state Zagier’s kernel function for L(sym2 f, s).

Theorem 4 (Zagier). Let D ≡ 1 (mod 4), D > 1, be a square-free integer and k > 2
an even integer. For m = 1, 2, . . . and 2− k < �(s) < k − 1, set

cm,D(s)

= mk−1 D
1
2−s

∑

t∈Z
t2≡4m (mod D)

(Ik(t
2 − 4m, t; s)+ Ik(t

2 − 4m,−t; s))L
(

s,
t2 − 4m

D

)

+
{
(−1)k/2 �(s+k−1)ζ(2s)

22s+k−3π s−1�(k)
uk−s−1 if m = u2, u > 0,

0 if m is not a perfect square.
(4)

Then the function

φs,D(z) =
∞∑

m=1

cm,D(s)e
2π imz

is a cusp form on �0(D) of weight k and character χD. Furthermore, for a normalised
Hecke eigenform f in Sk(D, χD), we have

〈φs,D, f 〉 = Ck
�(s + k − 1)

(4π)s+k−1
L(sym2 f, s + k − 1)

where Ck = (−1)k/2π
2k−3(k−1)

.

3. Proof of Theorem 1 and 2

The proof of both the theorems are essentially based on the same line of arguments
as Kohnen and Sengupta [7] and differ from each other in the last step. Before going
into the steps of the proof, we briefly explain the idea behind the proof. We first
write the kernel function for�(sym2 f, s) in terms of the basis element in Hk(D, χD),
for suitable values of s. Then by comparing the first Fourier coefficients on both
the sides, we get an identity for the average of L-functions �(sym2 f, s). Next we
proceed the proof by the method of contradiction. We assume, on the contrary, the
average of L-functions vanishes at some point in the critical region but off the critical
line. Then using certain analytic estimates of the terms involved in the identity and
asymptotics for the ratio of Gamma functions, we derive a contradiction as the weight
k is sufficiently large. Now we give the detailed proof.
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By Theorem 4, we see that

〈φs,D, f 〉 = Ck

Ds+k−1

π
1
2 (s+k−1)

2s+k−1�
( s+1

2

)�(sym2 f, s + k − 1).

Again, by Theorem 4, we know that φs,D is a cusp form in Sk(D, χD), for
2 − k < �(s) < k − 1. Therefore, writing φs,D in terms of the basis elements in
Hk(D, χD), we get

φs,D(z) = Ck

Ds+k−1

π
1
2 (s+k−1)

2s+k−1�
( s+1

2

)
∑

f ∈Hk(D,χD)

�(sym2 f, s + k − 1)

〈 f, f 〉 f (z).

Comparing the first Fourier coefficients on both the sides, we get

c1,D(s) = Ck

Ds+k−1

π
1
2 (s+k−1)

2s+k−1�( s+1
2 )

∑

f ∈Hk(D,χD)

1

〈 f, f 〉�(sym2 f, s + k − 1), (5)

for 2 − k < �(s) < k − 1. By using the functional equation (2), it suffices to prove
the theorem in the region k − 1

2 + ε < σ < k. Suppose that the right-hand side of (5)
vanishes at s = 1

2 + δ + i t0 where ε < δ < 1
2 . Then from the definition of c1,D(s),

we obtain

D−δ−i t0
∑

t∈Z
t2≡4 (mod D)

(

Ik

(

(t2 − 4, t; 1

2
+ δ + i t0

)

+ Ik

(

(t2 − 4,−t; 1

2
+ δ + i t0

))

× L

(
1

2
+ δ + i t0,

t2 − 4

D

)

+ (−1)k/2
�

(
k − 1

2 + δ + i t0
)
ζ(1+ 2δ + 2i t0)

2k−2+2δ+2i t0π−
1
2+δ+i t0�(k)

= 0.

The above identity can also be written as

(−1)
k
2−12k�(k)

�
(
k − 1

2 + δ + i t0
) D−δ−i t0

×
∑

t∈Z
t2≡4 (mod D)

(

Ik

(

t2 − 4, t; 1

2
+ δ + i t0

)

+ Ik

(

t2 − 4,−t; 1

2
+ δ + i t0

))

· L
(

1

2
+ δ + i t0,

t2 − 4

D

)

= ζ(1+ 2δ + 2i t0)

22δ−2+2i t0π− 1
2+δ+i t0

. (6)

Note that the right-hand side of (6) does not depend on k and D and is never zero for
ε ≤ δ ≤ 1

2 . We will show that the left-hand side of (6) goes to zero uniformly for
ε < δ < 1

2 as weight k or level D tends to infinity, which gives a contradiction.
In order to do this, we find suitable bounds for the summands in left-hand side

of (6). We need to consider the cases t = ±2 and ±t ≥ 3 separately because of the
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variation of the definition of Ik(
, t; s) and L(s,
) that depends on wheather 
 = 0
or 
 	= 0.

For t = ±2, by Equation (3) and the estimate of [7, p. 1645, Equation (8)], we have

2

(

Ik

(

0, 2; 1

2
+ δ + i t0

)

+ Ik

(

0,−2; 1

2
+ δ + i t0

))

= 2

(

e
π i
2

(
1
2−k+δ+i t0

)

+ e
− π i

2

(
1
2−k+δ+i t0

))√
π

· �(δ + i t0)�(k − 1/2− δ − i t0)

�(k)
2−k+1/2+δ+i t0

t0,ε

∣
∣�

(
k − 1

2 − δ − i t0
)∣
∣

2k�(k)
, (7)

where the implied constant in t0,ε depends only on t0 and ε. For ±t ≥ 3,
by Equation (7) of [7, p. 1645], we get

(

Ik

(

t2 − 4, t; 1

2
+ δ + i t0

)

+ Ik

(

t2 − 4,−t; 1

2
+ δ + i t0

))

t0 (t
2 − 4)−

1
4+ δ2

(
|t| − √t2 − 4

|t| + √t2 − 4

) k−1
2

·
∣
∣�

(
k − 1

2 + δ + i t0
)
�

(
k − 1

2 − δ − i t0
)∣
∣

2k�(k)2
. (8)

Now, we obtain the estimates for L
(1

2 + δ+ i t0,
t2−4

D

)
on the left-hand side of (6). For

|t| = 2, we have by definition

L

(
1

2
+ δ + i t0, 0

)

= ζ(2δ + 2i t0)

which is a continuous function in the range ε ≤ δ ≤ 1/2 (provided t0 	= 0) and hence
is bounded. If t0 = 0, then we consider the function

2i k cos

(
π

2

(
1

2
+ δ + i t0

))

· ζ(2δ + 2i t0),

where

2i k cos

(
π

2

(
1

2
+ δ + i t0

))

= e
π i
2

(
1
2−k+δ+i t0

)

+ e−
π i
2

(
1
2−k+δ+i t0

)

is the second factor on the right hand side of Equation (7). The previous argument
implies that the above function is also bounded for ε ≤ δ ≤ 1/2.

On the other hand, if |t| 	= 2, then for all δ ≥ 0 and all ε′ > 0, one has

L

(
1

2
+ δ + i t0,

t2 − 4

D

)

t0,ε′

∣
∣
∣
∣
∣

t2 − 4

D

∣
∣
∣
∣
∣

1
2+ε′

. (9)

which follows from [2, Chapter 12, Exercise 22(b)].
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Since D > 1 is an odd fundamental discriminant, therefore for t ∈ Z with |t| ≤ 2,
the congruence t2 ≡ 4 (mod D) has only solutions for t = ±2. Denote the left-hand
side of (6) by Lk,D,δ,t0 . Then by using the bounds from (7), (8) and (9) (fixing any ε′
in (9)) and the absolute bound for L

(1
2 + δ + i t0, 0

)
, we deduce that

|Lk,D,δ,t0 | t0,ε D−δ
∣
∣�

(
k − 1

2 − δ − i t0
)∣
∣

∣
∣�

(
k − 1

2 + δ + i t0
)∣
∣

+
∣
∣�

(
k − 1

2 − δ − i t0
)∣
∣

D
1
2+δ+ε′�(k)

∑

t≥3
t2≡4 (mod D)

(t2 − 4)
1
4+ δ2+ε′

(
|t| − √t2 − 4

|t| + √t2 − 4

)k−1
2

.

Now we first show that the sum over t ≥ 3 on the right hand side of the above
converges for k ≥ 7 and is bounded by an absolute constant independent of k. In fact,
for t ≥ 3, we have

t2 − 4 ≥ t2 + 9

t2
− 6 =

(

t − 3

t

)2

,

and hence

t −
√

t2 − 4 ≤ 3

t
≤ 1, for t ≥ 3.

Moreover, for t ≥ 3, we also have

t +
√

t2 − 4 ≥ 2
√

t2 − 4 and
√

t2 − 4 ≥ t

2
.

Thus, using the above elementary estimates, we have

∑

t≥3
t2≡4 (mod D)

(t2 − 4)
1
4+ δ2+ε′

(
|t| − √t2 − 4

|t| + √t2 − 4

)k−1
2

≤ 1

21/2+δ+2ε′
∑

t≥3

(
1

t

)k/2−1−δ−2ε′

.

The sum on the right hand side of the above converges absolutely for k ≥ 7,
ε′ < δ < 1/2 and bounded by an absolute constant.

Using the fact that (see [1, 6.1.46])

lim
x→∞ xb−a �(x + a)

�(x + b)
= 1 (a, b ∈ C\R; x →∞)

and the explicit asymptotics of xb−a �(x+a)
�(x+b) for x → ∞ given in [1, 6.1.47], we see

that for Theorem 1, by fixing D, we obtain that Lk,D,δ,t0 → 0 uniformly in δ (since
δ > ε > 0) as the weight k goes to infinity.

For Theorem 2, we fix the weight k and let the level D → ∞ over odd fundamental
discriminant, then also Lk,D,δ,t0 → 0. This proves the theorems. �
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Abstract. Let f, g be distinct newforms of half-integral weights k1+ 1/2 and k2+ 1/2
having real Fourier coefficients a f (n) and ag(n) respectively. If k1 �= k2, Gun, Kohnen
and Rath [4] showed the existence of an infinite set S of primes p such that the sequence
{a f (t p2m)ag(t p2m)}m∈N changes sign infinitely often, where t is a square-free integer
such that a f (t)ag(t) �= 0. In this article, we remove the assumption k1 �= k2 and show
that the set S of primes has natural density one.

Keywords. Half-integral weight newform, sign changes of Fourier coefficients, Hecke
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1. Introduction

Let N, k be positive integers and χ be a Dirichlet character mod 4N . Denote by
Sk+1/2(4N, χ) the space of cusp forms of weight k+1/2 for the congruence subgroup
�0(4N) with Nebentypus character χ . Also let Snew

k+1/2(4N, χ) be the subspace of
newforms in the space Sk+1/2(4N, χ). For each f ∈ Sk+1/2(4N, χ), we have the
Fourier expansion

f (z) :=
∞∑

n=1

a f (n)q
n,

where q := e2π i z and z is in the complex upper half-plane H := {z ∈ C | �(z) > 0}.
Owing to various reasons, when the Fourier coefficients a f (n) are real, the problems
of sign change of the Fourier coefficients of integral and half-integral weight cusp
forms have been studied by several mathematicians. For any two newforms f ∈
Snew

k1+1/2(4N1, χ1) and g ∈ Snew
k2+1/2(4N2, χ2) having real Fourier coefficients, in this

article, we study the problem of sign changes of the sequence {a f (m)ag(m)}m∈N when
f �= g. Throughout the article, f ∈ Snew

k+1/2(4N, χ) will be called a newform if it is
an eigenfunction of all Hecke operators.

By a celebrated work of Shimura [17], one knows that for any square-free integer
t ∈ N, there exists a lifting from the space of cusp forms of half-integral weight
k + 1/2 to the space of cusp forms of integer weight 2k. This lift is determined
by the Fourier coefficients a f (tn2) of f for all n ∈ N. Motivated by the study
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of sign changes of Fourier coefficients of integral weight cusp forms, Bruinier and
Kohnen [2], assuming Chowla’s conjecture, showed that the sequence {a f (tm2)}m∈N
changes sign infinitely often for a fixed square-free integer t ∈ N such that a f (t) �= 0.
Later, Kohnen [8] made the above result unconditional. Further, for a Hecke eigenform
f ∈ Sk+1/2(4N, χ) with χ real, Bruinier and Kohnen unconditionally showed that for
all but finitely many primes p coprime to 4N , the sequence {a f (tpm)}m∈N changes
sign infinitely often when a f (t) �= 0. The last result was generalized by Gun, Kohnen
and Rath [4]. More precisely, they proved the following theorem.

Theorem 1 (Gun, Kohnen and Rath). Let N1, N2 ∈ N be odd and square-free and
k1, k2 ≥ 2 be integers such that k1 �= k2. Also let

f (z) :=
∑

n≥1

a f (n)q
n ∈ Snew

k1+1/2(4N1, χ1)

and g(z) :=
∑

n≥1

ag(n)q
n ∈ Snew

k2+1/2(4N2, χ2)

be distinct Hecke eigenforms where χ1, χ2 are real characters mod 4N1 and mod 4N2

respectively. Also assume that the Fourier coefficients a f (n), ag(n) ∈ R for all n ∈ N

and there exists a square-free t ∈ N such that a f (t)ag(t) �= 0. If S denotes the set
of primes p such that the sequence {a f (tp2m)ag(tp2m)}m∈N changes sign infinitely
often, then the set S is infinite.

The proof of this theorem uses Rankin-Selberg theory, a classical theorem of
Landau on the oscillation of the coefficients of a Dirichlet series having real
coefficients and a result of D. Ramakrishnan [13]. Here we remove the condition
k1 �= k2 and show that the natural density of the set S of primes is one. More precisely,
we have the following theorem.

Theorem 2. Let k1, k2 > 1 be natural numbers, N1, N2 be odd square-free positive
integers and χ1, χ2 be real characters modulo 4N1 and 4N2 respectively. Suppose that

f (z) :=
∑

n≥1

a f (n)q
n ∈ Snew

k1+1/2(4N1, χ1)

and g(z) :=
∑

n≥1

ag(n)q
n ∈ Snew

k2+1/2(4N2, χ2)

are distinct Hecke eigenforms. Also let the Fourier coefficients a f (n), ag(n) be real
for all n ≥ 1 and there exists a square-free integer t ∈ N with a f (t)ag(t) �= 0. If S
denotes the set of primes p such that the sequence {a f (tp2m)ag(tp2m)}m∈N changes
sign infinitely often, then the set S has natural density one.

Remark 1.1. Theorem 2 can be proved for newforms lying in Kohnen’s plus space.
The proof will be similar to that of Theorem 2.

In order to prove Theorem 2, we follow the method of Gun, Kohnen and Rath [4].
To find the natural density of the set S of primes, we shall use a consequence of the
joint Sato-Tate distributions of two distinct integral weight newforms.
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This article is divided in three sections. In the next section, we shall list notations
of the paper and recall some of the preliminaries. In the last section, we give the proof
of the theorem.

2. Notation and Preliminaries

Throughout the paper, we use following notations. Unless otherwise stated p denotes
a prime number. Let P be the set of all prime numbers. We say a subset A of P has
natural density d(A) if for any real number x ≥ 2, we have

d(A) = lim
x→∞

#{p ≤ x | p ∈ A}
#{p ≤ x | p ∈ P} .

We shall also use the following notion of uniform distribution frequently.

Definition 1 ([9, page 171]). Let μ be a non-negative regular Borel measure on a
compact Hausdorff space X such that μ(X) = 1. A sequence {xn}n∈N ⊂ X is said to
be μ-uniformly distributed in X if for any continuous function f : X → R, one has

lim
N→∞

1

N

∑

1≤n≤N

f (xn) =
∫

X
f dμ.

In order to prove the theorem stated in the introduction, we need the following
classical theorem of Landau.

Theorem 3 (Landau). Let f (s) := ∑∞
n=1 a(n)n−s be a Dirichlet series such that

a(n) ≥ 0 for all n ≥ n0. Also assume that the abscissa of convergence σ0 of the series
f (s) is finite. Then the function f has a singularity at s = σ0.

The proof of this theorem can be found in several books. For example, one can look
at Montgomery and Vaughan [11, p. 16].

2.1 Modular forms of integral weight

Let k, N be positive integers and

�0(N) :=
{[

a b
c d

]

∈ SL2(Z) | c ≡ 0 mod N

}

.

Also let Sk(N) be the space of cusp forms of weight k for the congruence subgroup
�0(N) and Snew

k (N) be the subspace of newforms of the space Sk(N). Any f ∈ Sk(N)
has a Fourier expansion as follows:

f (z) :=
∑

n≥1

a f (n)q
n. (1)

For f ∈ Sk(N) and a Dirichlet character χ mod D, one defines a function, denoted by
f ⊗ χ , on the upper half-plane H as follows:

( f ⊗ χ)(z) :=
∞∑

n=1

a f (n)χ(n)q
n.
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It is known [16, Proposition 3.64] that f ⊗ χ is a cusp form of weight k for the
congruence subgroup �0(N D2) with the Nebentypus χ2. In fact, by the work of Ribet
[15, Theorem 3.9], one knows the following.

Theorem 4 (Ribet). Let N ∈ N be a square-free and f ∈ Snew
k (N) be a normalized

Hecke eigenform. Let χ be a non-trivial Dirichlet character and

g(z) :=
∞∑

n=1

ag(n)q
n

be a newform such that ag(p) = a f (p)χ(p) for almost all p ∈ P . Then the level of g
is not square-free.

Now we introduce the notion of CM forms or forms having complex multiplication
in the sense of Ribet [14].

Definition 2. Let χ be a non-trivial Dirichlet character. Then a normalized Hecke
eigenform f ∈ Snew

k (N) is said to be a CM form or a form having complex
multiplication by χ if

a f (p) = χ(p)a f (p)

for all primes p ∈ P in a set of primes of density one. Further, the form f is said to
be a non-CM form or does not have complex multiplication if it is not a CM form.

Using Theorem 4, one can now conclude that there are no CM forms of square-free
levels.

Let f ∈ Snew
k (N) be a normalized Hecke eigenform with the Fourier expansion as

in (1). Then we define

λ f (n) := a f (n)

n(k−1)/2
.

From the theory of Hecke operators, we have

λ f (1) = 1 and λ f (m)λ f (n) =
∑

d|(m,n),
(d,N)=1

λ f

(mn

d2

)
.

Also by a celebrated work of Deligne, we have

|λ f (n)| ≤ d(n) for all (n, N) = 1,

where d(n) denotes the number of positive divisors of n. Thus for (p, N) = 1, one
can write

λ f (p) := 2 cos θ f (p) for 0 ≤ θ f (p) ≤ π.
If f ∈ Snew

k (N) is a normalized Hecke eigenform which is a non-CM form,
then the celebrated Sato-Tate conjecture predicts that the values of θ f (p) is
uniformly distributed in the interval [0, π ] with respect to the Sato-Tate measure
dμ := (2/π) sin2 θdθ . This is now a theorem due to the work of Barnet-Lamb,
Geraghty, Harris and Taylor [1].
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Sato-Tate conjecture can be generalized as follows: if f and g are two distinct
newforms which are non-CM forms and neither of them is quadratic twist of other,
then the sequence {(θ f (p), θg(p))}p∈P is uniformly distributed in [0, π ]× [0, π ] with
respect to the product Sato-Tate measure (4/π2) sin2 θ sin2 βdθdβ. As an application
of the work of Harris [6] on joint Sato-Tate conjecture, one can derive the following
theorem.

Theorem 5. Let f ∈ Snew
k1
(N1) and g ∈ Snew

k2
(N2) be normalized Hecke eigenforms

and at least one of f, g is a non-CM form. For any prime p with (p, N1 N2) = 1, write

λ f (p) := 2 cos θ f (p) and λg(p) := 2 cos θg(p),

where θ f (p), θg(p) ∈ [0, π ]. For any fixed α, if

lim sup
x→∞

#{p ≤ x | θ f (p)± θg(p) = α}
x/ log x

> 0,

then f = g ⊗ χ for some Dirichlet character χ .

The above theorem has been proved in a recent joint work by Gun and the
author [5].

2.2 Modular forms of half-integral weight

In this subsection, we shall recall the definition of half-integral weight modular forms
and list some basic facts we shall use to prove Theorem 2. For more details see [7, 10,
17].

The theta function θ(z) is defined on the upper half plane H by

θ(z) := 1+ 2
∞∑

n=1

qn2
,

for any z ∈ H and q := e2π i z . Since the theta function θ(z) does not vanish on H, we
can define the theta multiplier as follows: for any γ ∈ �0(4) and z ∈ H, let

j (γ, z) := θ(γ z)

θ(z)
.

It is known that

j (γ, z)2 =
(−1

d

)

(cz + d),

where γ = [
a b
c d

] ∈ �0(4). The symbol
( c

d

)
for c, d ∈ Z with d �= 0 is as in [17].

With these notations in place, we are now ready to define half-integral weight modular
forms.

Definition 3. Let k and N be positive integers and χ be a Dirichlet character
modulo 4N. A holomorphic function f (z) on the upper half plane H is called a
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half-integral weight modular form of weight k + 1/2 and with Nebentypus χ if it is
holomorphic at the cusps of �0(4N) and satisfies

f (γ z) = χ(d) j (γ, z)2k+1 f (z)

for all γ = [
a b
c d

] ∈ �0(4N). Further, if f vanishes at the cusps of �0(4N), then it is
called a cusp form.

For any positive integers k, N , let the space of all cusp forms of weight k + 1/2
and Nebentypus χ for the group �0(4N) be denoted by Sk+1/2(4N, χ). Any
f ∈ Sk+1/2(4N, χ) has a Fourier expansion as follows:

f (z) :=
∞∑

n=1

a f (n)q
n. (2)

On the space Sk+1/2(4N, χ), the action of Hecke operators is given by:

f (z) | T (p2, k, χ)

:=
∞∑

n=1

(

a f (p2n)+ χ∗(p)

(
n

p

)

pk−1a f (n)+ χ∗(p2)p2k−1a f (n/p2)

)

qn,

where χ∗ is the Dirichlet character defined by χ∗(n) :=
(
(−1)k

n

)
χ(n) and

a f (n/p2) = 0 if p2 � n. It is known that the space of cusp forms Sk+1/2(4N, χ) is
stable under the action of the Hecke operators. We also need the following operator
on the space of cusp forms of half-integral weight modular forms. For any integer
m ∈ N, one defines

⎛

⎝
∑

n≥1

a(n)qn

⎞

⎠ |U (m) :=
∑

n≥1

a(mn)qn.

Definition 4. A cusp form f ∈ Sk+1/2(4N, χ) is said to be a Hecke eigenform if it is
an eigen function of T (p2, k, χ) for all primes p with (p, 4N) = 1.

We can now state the famous result of Shimura [17] which lifts half-integral weight
cusp forms to integral weight cusp forms. More precisely, by the works of Shimura
[17] and Niwa [12], one has the following theorem.

Theorem 6 (Shimura correspondence). Let k, N ∈ N and χ be a Dirichlet
character mod 4N. Also let f ∈ Sk+1/2(4N, χ) be a Hecke eigenform having the
Fourier expansion as in (2). For any square-free integer t ∈ N, define

At (n) :=
∑

d|n
χt,N (d)d

k−1a f

(
n2t

d2

)

,

where χt,N is a Dirichlet character defined by

χt,N (d) := χ(d)
(
(−1)kt

d

)

. (3)
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Then the function F defined on the upper half-plane H by

F(z) :=
∑

n≥1

At (n)q
n

is a cusp form in S2k(2N, χ2) provided k ≥ 2.

For any square-free odd integer N ≥ 1 and any quadratic character χ mod N ,

let χ(−1) = ε and ψ1 :=
(

4ε
·
)
χ . In [7], Kohnen defined a canonical subspace

S+k+1/2(4N, ψ1) of the space of cusp forms Sk+1/2(4N, ψ1), as follows:

S+k+1/2(4N, ψ1) :=
{

f ∈ Sk+1/2(4N, ψ1) | a f (n) = 0 if ε(−1)kn ≡ 2, 3 mod 4
}
.

The space S+k+1/2(4N, ψ1) is known as Kohnen’s plus space. He studied the newforms

theory in the space S+k+1/2(4N, ψ1). In particular, he defined the subspace of

newforms S+,new
k+1/2 (4N, ψ1) ⊂ S+k+1/2(4N, ψ1) as follows: the subspace

S+,old
k+1/2(4N, ψ1) of oldforms is defined by

S+,old
k+1/2(4N, ψ1) :=

∑

d|N,d<N

[
S+k+1/2(4d, ψ1)+ S+k+1/2(4d, ψ1)|U (N2/d2)

]
.

and define the subspace of newforms S+,new
k+1/2 (4N, ψ1) to be the orthogonal complement

of the subspace S+,old
k+1/2(4N, ψ1) of oldforms with respect to the Petersson inner

product in the Kohnen plus space S+k+1/2(4N, ψ1). Recall that the Petersson inner
product 〈 f, g〉 of f, g ∈ Sk+1/2(4N, χ) is defined as

〈 f, g〉 := 1

[�0(4) : �0(4N)]

∫

�0(4N)\H
f (z)g(z)yk+1/2 dxdy

y2 ,

where x := �(z), y := �(z). The space S+,new
k+1/2 (4N, ψ1) of newforms is known as

Kohnen’s newform space. He established the correspondence between the Kohnen’s
newform space and the newform space of integral weight cusp forms. More precisely,
he proved the following.

Theorem 7 (Kohnen). One has

S+k+1/2(4N, ψ1) = ⊕ r,d≥1,
rd|N

S+,new
k+1/2 (4d, ψ1)|U (r2).

Further, the space S+,new
k+1/2 (4N, ψ1) has a basis consists of eigenvectors of all the

operators T (p2, N, ψ1) for all p � N and U (p2) for all p|N. If f ∈ S+,new
k+1/2(4N, ψ1)

is such that f |T (p2, N, ψ1) = λ f (p) f for all p � N and f |U (p2) = λ f (p) f , then
there exists F ∈ Snew

2k (N) such that F is a Hecke eigenform having p-th eigenvalue
λ f (p). Further, there is a finite linear combination of Shimura correspondence which
is an isomorphism between S+,new

k+1/2 (4N, ψ1) and Snew
2k (N) as Hecke modules.
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For any odd square-free positive integer N and a quadratic character χ , Manickam,
Ramakrishnan and Vasudevan [10], studied the theory of newforms of half-integral
weight cusp forms. In particular, they defined the subspace of oldforms as follows:

Sold
k+1/2(4N, ψ1) :=

∑

d|N,d<N

[
Sk+1/2(4d, ψ1)+ Sk+1/2(4d, ψ1)|U (N2/d2)

]

+ S+k+1/2(4N, ψ1)+ S+k+1/2(4N, ψ1)|U (4).
Now define the subspace Snew

k+1/2(4N, ψ1) of newforms as the orthogonal complement

of the space Sold
k+1/2(4N, ψ1) of oldforms with respect to the Petersson inner product

in the space Sk+1/2(4N, ψ1). Then they proved the existence of an linear isomorphism
between the space of newforms of half-integral weight and the space of newforms of
integral weight as follows.

Theorem 8 (Manickam, Ramakrishnan and Vasudevan). The space Snew
k+1/2

(4N, ψ1) has a basis consists of eigenvectors of all the operators T (p2, N, ψ1) for all
p � N and U (p2) for all p|N. Further, the space Snew

k+1/2(4N, ψ1) is isomorphic to the
space Snew

2k (2N) under a suitable linear combination of Shimura lift. In particular, the
image of half-integral weight newform in Snew

k+1/2(4N, ψ1) is a newform in Snew
2k (2N)

with the same set of eigenvalues.

One can also define another canonical subspace similar to that of Kohnen’s plus
space of Sk+1/2(4N) which maps to the space S2k(N) of cusp forms under original
Shimura lift. For more details see Gun, Manickam and Ramakrishnan [3].

3. Proof of Theorem 2

Let p ∈ P be an odd prime such that (p, N1 N2) = 1. Also let λ f (p) and λg(p) be
complex numbers such that

f (z)|T (p2, N1, χ1) = λ f (p) f (z) and g(z)|T (p2, N2, χ2) = λg(p)g(z).

By Theorem 8, one knows that there exist newforms F ∈ Snew
2k1
(2N1) and G ∈

Snew
2k2
(2N2) such that F and G are the eigenfunctions for the Hecke operator T (p)with

eigenvalues λ f (p) and λg(p) respectively. Since F ∈ Snew
2k1
(2N1) and G ∈ Snew

2k2
(2N2),

hence λ f (p) and λg(p) both are real. By hypothesis, a f (t)ag(t) �= 0 for some
square-free t ∈ N. Now for any s ∈ C with �(s) � 1, by Shimura correspondence,
we have

∑

m≥0

a f (tp2m)

pms
= a f (t)

1− χt,N1(p)pk1−1−s

1− λ f (p)p−s + p2k1−1−2s

and
∑

m≥0

ag(tp2m)

pms
= ag(t)

1− χt,N2(p)pk2−1−s

1− λg(p)p−s + p2k2−1−2s
,



Simultaneous Sign Changes 59

where χt,N1 and χt,N2 are as in (3). Write

1− λ f (p)p−s + p2k1−1−2s = (1− αp p−s)(1− αp p−s)

and 1− λg(p)p−s + p2k2−1−2s = (1− βp p−s)(1− βp p−s),

where

αp+αp = λ f (p), βp+βp = λg(p) and αpαp = p2k1−1, βpβp = p2k2−1. (4)

Now consider the Dirichlet series

Dp(s) :=
∑

m≥0

a f (tp2m)ag(tp2m)

pms
.

Using partial fractions, we have

Dp(s) = a f (t)ag(t)H(p−s)

(1− αpβp p−s)(1− αpβp p−s)(1− α pβp p−s)(1− α pβ p p−s)
,

where H is a polynomial of degree ≤ 3. Hence Dp(s) has poles. Consider the set

X := {p ∈ P | (p, 2N1 N2) = 1, αpβp �∈ R and αpβ p �∈ R}. (5)

If p ∈ X then by Theorem 3, the sequence {a f (tp2m)ag(tp2m)}m∈N changes sign
infinitely often. Now, recall that S is the set of primes p such that the sequence
{a f (tp2m)ag(tp2m)}m∈N changes sign infinitely often. Hence X is a subset of S. Since
the expressions involving αp and βp in (4) and (5) are symmetric with respect to
complex conjugation, without loss of generality we can write αp = pk1−1/2eiθ f (p)

and βp = pk2−1/2eiθg(p) with 0 ≤ θ f (p), θg(p) ≤ π . Now observe that αpβp ∈ R

precisely when θ f (p) + θg(p) = mπ for m = 0, 1, 2. Similarly, αpβ p ∈ R if and
only if θ f (p)− θg(p) = lπ for l = −1, 0, 1 respectively. Thus we have

X = {p ∈ P | (p, 2N1 N2) = 1, θ f (p)+ θg(p) �= mπ,

m = 0, 1, 2 and θ f (p)− θg(p) �= lπ, l = −1, 0, 1}.
By (4), we have λF (p) := λ f (p)/pk1−1/2 = 2 cos θ f (p) and λG(p) :=
λg(p)/pk2−1/2 = 2 cos θg(p). Since N1, N2 are square-free by Theorem 4,
we conclude that neither F nor G is a twist of other. Now we use Theorem 5 to
conclude that the natural density of the set X is 1. Hence the set S has natural
density 1. This completes the proof. �
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Abstract. We generalize results of D. Kaprekar, H. Hasse and G. Prichett from 3 and
4 digits (with base 10 or general base respectively), to 5, 7, 9 digit numbers (in any
base) characterizing all Kaprekar constants in these cases. For a fixed base, and any
number of digits, we reduce the infinite computation needed, a priori, to a finite effective
computation. We also give several other results and conjectures for general bases and
digits, and mention some interesting open questions.

Keywords. Kaprekar constant, dynamical system, digit expansions, discrete

Dedicated to the memory of my father.

1. Introduction

D. R. Kaprekar (1905–1986), after his BA in 1929 from University of Bombay,
worked as a school-teacher in Maharashtra, India. He loved numbers and in addition
to the typical fascination with primes, factorizations, identities, he was also fascinated
by (decimal) digit expansions, digit sums, palindromes, reversal symmetries etc.

When Srinivasan, who knew Hardy-Ramanujan’s famous ‘taxi-cab number’ story
of 1729 = 123 + 13 = 103 + 93, tested him by asking what he sees in 1729, his reply
was that it is 19 ∗ 91, 19 is its sum of digits and also its first-last digits, and from its
digits, you get primes 17, 71; 79, 97.

He made several discoveries. The one beautiful discovery [K49, K55] from 1946
(see [D08]) related to this paper is that any number of four (decimal) digits, not all
the same, will lead to 6174 (now called the Kaprekar constant), after (at most 7)
repetitions [K55] of the (Kaprekar) process of ‘Order, Reverse and Subtract’.

For example, 0132 leads first to 3210− 0123 = 3087, then to 8730− 0378 = 8352
and then to 8532− 2358 = 6174.

To explore how rare this beautiful phenomenon is among the infinite number of
scenarios that you get, as you change the base and the number of digits, various
authors [T72, ES88, DG04, M17] studied such systems, which are really (infinitely
many) finite dynamical systems. It was shown that for decimals (i.e., base 10),
for 3 digits, the constant is 495, and there is no such behavior in any other (than
3 and 4) number of digits, but sometimes weaker behavior with longer cycles,
or sometimes with more or no fixed points. In other direction, Helmut Hasse and
Gordon Prichett [HP78] explored 4 digit numbers for any base. We recall their results
below.
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In this article, we generalize these results (to different kind of results) for 5, 7,
9 digit numbers. It is interesting to note that Hasse-Prichett or Jordan paper has no
citations listed on Math Sci Net, so only much later after announcing these results at
the December 2017 conference, the author found out that [P78] had already settled
the 5 digit case. In contrast to the 3, 4, 5 digit cases, where infinitely many bases
(arithmetically, exponentially, arithmetically distributed (eventually) respectively)
exhibit Kaprekar phenomena, in the 7 or 9 digit cases, only one base (each) has this
property.

In this article, we explore any base and number of digits, giving a complete answer
for 5, 7, 9 digits (see Section 4), and various partial results and guesses (see Section 5)
in general situation, reducing the ‘fixed base, any number of digits’ case to a finite
effective computation.

2. Notation and Basic dynamics of Kaprekar process

2.1 Fixed digit expansions

We fix a base B > 1 and number of digits D > 1, and look at all non-negative integers
n of D digits (where we allow leading zeros) in base B. We write n = ∑D−1

i=0 ni Bi

(0 ≤ ni < B) also as [nD−1, . . . , n0], or even sometimes by dropping brackets and
commas. We also use the short-form (a)k for the digit a repeated k times. We write
S = S(B,D) for the set of all B D numbers of D digits in base B, and S for the subset
of B D − B numbers, with all digits not the same.

2.2 Kaprekar process

Given such n, let −→n (respectively←−n ) be the number obtained by arranging the digits
of n in descending (respectively ascending) order, so that Kaprekar process κ : S→ S
leads from n to κ(n) := −→n −←−n , we denote its result by n ⇒ κ(n).

2.3 Examples

For (B, D) = (10, 4), κ(0132) = 3087, κ(6174) = 6174, the fixed point for κ .
Kaprekar’s result says that the 7-th iteration of κ applied to any n of 4 digits, not all
the same, is κ(7)(n) = 6174.

2.4 Fixed points

Since numbers with all digits the same get mapped to zero by κ , we ignore this trivial
fixed point zero of κ . We will see below that for D > 2, κ restricts to S → S.
By F P(B, D)we denote the set of nonzero fixed points of κ .
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2.5 Kaprekar constants

We say that (B, D) is Kaprekar tuple (showing Kaprekar phenomena), with Kaprekar
constant K (B, D) ∈ F P(B, D), if every element n ∈ S is mapped to K (B, D) after
some number of iterations of κ .

Since S is a finite set, every element eventually enters some cycle under iterations
of κ . We see that the tuple is Kaprekar, exactly when there is a unique cycle (which
means all the elements in S reach the same cycle eventually) which is (the unique)
fixed point. Thus, if F P(B, D) is empty, or has more than one element, or if there is
a cycle of length more than one, (B, D) cannot be Kaprekar.

2.6 Remarks on effectivity and size reductions

For a fixed (B, D) the problem is, of course, finite and effective, though
computationally expensive. One has to check B D − B numbers a priori, much less,
in fact, as the order of digits of the initial number is unimportant. But right after the
first application of κ , the answer only depends on about D/2 ordered differences
which are monotonically decreasing, as we will see below, thus getting about
square-root reduction. This size is still huge for B, D of moderate size, because of the
exponential nature of these simple bounds.

2.7 Differences and subtraction possibilities

Let D = 2n or 2n + 1. Let
−→
N = [a1, . . . aD] ∈ S, and consider differences

di = ai − aD−(i−1) for 1 ≤ i ≤ n = �D/2	. Then d1 ≥ d2 ≥ · · · dn ≥ 0 and d1 > 0.

Then κ(N) = −→N −←−N equals

[d1, . . . , dn−1, dn − 1, B − 1, B − dn − 1, . . . B − d2 − 1, B − d1],

if dn > 0, (with ‘central’ B − 1 absent for D even) and it equals

[d1, . . . , dk−2, dk−1 − 1, B − 1, . . . , B − 1, B − dn − 1, . . . , B − d2 − 1, B − d1],

when dk−1 > 0, dk = · · · = dn = 0.
Observe that κ(N) only depends on the differences di ’s, and the sum of digits of

κ(N) is r(B − 1) where D/2 ≤ r ≤ D − 1.

2.8 S versus S

For (B, D) = (2 j + 1, 2), we have κ([2 j, j − 1]) = [ j, j ], so S is not preserved
under κ . (In particular, this is not a Kaprekar tuple). We now show that S is preserved
under κ for other (B, D), by deriving a contradiction from the assumption that the
image of some element in S under κ has all digits the same. For D = 2, if a − b =
d > 0, then κ([a, b]) = [d − 1, B − d], which does not have equal digits for even B.
For D > 2, we use the calculation of differences in the previous subsection: For
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D > 3, in the first case (namely dn > 0), we have n > 1, and we get d1 = dn − 1,
contradicting with d1 ≥ dn , whereas in the second case, we get dk−1 − 1 = B − 1,
contradicting di ≤ B − 1. For D = 3, we have n = 1 and a similar contradiction
d1 − 1 = B − 1.

So we can always restrict to S, when D > 2, for the iterations of κ .

3. Kaprekar phenomena for D ≤ 4

3.1 D = 2

(This seems to be folklore). If a > b, [a, b] − [b, a] = [b, a] leads to 2a = b + B,
a = 2b+1, thus F P(B, 2) non-empty implies B = 3b+2, in which case F P(B, 2) =
{[b, 2b + 1]}. In other words, n = 3b2 + 4b + 1 is the unique (non-trivial) fixed
point then. We saw above that Kaprekar phenomena implies that B is even, so that
B = 6m + 2. Now (2, 2) is clearly Kaprekar, with K (2, 2) = [0, 1]. But for m > 0,
we do not get Kaprekar phenomena: Note κ([a, b]) = [d − 1, B − d], for |a − b| =
d > 0, so that the difference |B − 2d + 1| in the image of κ is odd. The difference for
the the fixed point [2m, 4m + 1] is 2m + 1. But |B − 2d + 1| = 2m + 1, for odd d
implies d = 2m+1. Thus, if you start with a tuple in the image of κ , with d �= 2m+1,
Kaprekar process iterations will never lead to the fixed point. For example, if you start
with 1, its κ-image being [0, B − 1], it will not lead to the fixed point.

3.2 D = 3

Theorem 1 (See [J64]). The tuple (B, 3) is Kaprekar, if and only if B is even. We have
K (2m, 3) = [m − 1, 2m − 1,m], and it is reached in at most m iterations.

Proof. We give the short proof from [J64]. When a ≥ b ≥ c, with not all digits the
same, we have κ([a, b, c]) = [a − c − 1, B − 1, B − a + c]. So one digit of the
image is B − 1 and the other 2 add to B − 1. When B = 2m, it leads to (ordered)
[2m − 1, n, 2m − 1 − n], with n ≥ m. For n > m, the next step leads to [2m − 1,
n − 1, 2m − n] and so after n − m iterations one reaches the fixed point. In other
direction, if B = 2m + 1, existence of fixed point with digits 2m, n, 2m − n, with
n ≥ m, leads to κ([2m, n, 2m−n]) = [n−1, 2m, 2m−n+1], giving n−1 = 2m−n,
parity contradiction. �

3.3 D = 4

The complexity increases a lot with one more digit.

Theorem 2 (See [HP78]). The set F P(B, 4) is non-empty, if and only if B is 2, 4 or
5k, with (d1, d2) being (1, 0), (1, 1); (3, 1); (3k, k) respectively. The respective fixed
points are [0, 1, 1, 1], [1, 0, 0, 1], [3, 0, 2, 1] and [3k, k − 1, 4k − 1, 2k]. The tuple
(B, 4) is Kaprekar, if and only if B = 2n ∗ 5, with n = 0 or n odd.
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4. Kaprekar phenomena for 5, 7, 9 digits

4.1 D = 5

Theorem 3. The set F P(B, 5) is non-empty, if and only if B = 2 (in which case,
it has 2 elements) or B = 3k (in which case, it is singleton). The tuple (B, 5) is
Kaprekar, if and only if B = 3k, with k = 1 or k ≥ 5 odd. In this case, K (B, 5) =
[2k, k − 1, 3k − 1, 2k − 1, k], corresponding to (d1, d2) = (2k, k).

Proof. We refer to [P78] for the full proof, giving only the proof for the first claim
and of the ‘easier half’ of the second, omitting author’s (a little different, but not any
simpler) proof of the other half.

First we solve for all fixed points N . We use the ‘differences’ calculation and the
notation as above, with cases (i) d1 > d2 > 0, (ii) d1 = d2 > 0 and (iii) d2 = 0.

For a fixed point N , if M = −→N −←−N , then
−→
M = −→N .

The inequalities applied to this easily give that in case (i)
−→
N = [B − 1, d1,

B − d2 − 1, B − d1, d2 − 1], so that d1 = (B − 1) − (d2 − 1), and d2 = d1 −
(B − d1). Solving these we get B = 3d2 and d1 = 2d2, giving the fixed point
[2k, k − 1, 3k − 1, 2k − 1, k] for B = 3k. In case (ii), writing d1 = d2 = d , we get−→
N = [B−1, B−d, d, d−1, B−d−1], with B−1 = B−d and d−1 = B−d−1,
leading to B = 2d = 2 corresponding to fixed point [1, 0, 1, 0, 1] for B = 2. In the
remaining case (iii), writing d1 = d , we get

−→
N = [B−1, B−1, B−1, B−d, d−1].

(This is because, the other option
−→
N = [B − 1, B − 1, B − 1, d − 1, B − d] leads

to the contradiction d = (B − 1)− (B − d).). Since d2 = 0, we get B − 1 = B − d
implying d = 1. So d = (B − 1)− (d − 1) = B − 1. Hence, in this case B = 2 and
the fixed point is [0, 1, 1, 1, 1]. This proves the first claim of the Theorem.

Next we rule out B = 6k and B = 9 from candidates for Kaprekar phenomena,
as they have (straight-forward to check) respectively a 2-cycle starting from
[6k−1, 3k, 3k, 3k, 3k−2], and a 5-cycle starting from [8, 8, 4, 3, 1] (with (d1, d2) pair
cycling through (7, 5), (6, 4), (5, 3), 6, 1), (8, 4) while the fixed point corresponds to
(6, 3)). This finishes the proof of the ‘only if’ part of the second statement. �

4.2 D = 7

Theorem 4. For D = 7, Kaprekar phenomena happens, if and only if B = 4, in which
case [3, 2, 0, 3, 2, 1, 1] is the fixed point.

Proof. Let n ≥ 0. We rule out B = 9+ 4n, 18+ 4n, 23+ 4n, 24+ 4n by exhibiting
respectively a 2-cycle, 4-cycle, 8-cycle, 19-cycle.

For B = 9 + 4n,
−→
N = [8 + 4n, 6 + 3n, 6 + 3n, 5 + 2n, 3 + 2n, 3 + n, 1 + n]

corresponding to differences (7+ 3n, 3+ 2n, 3+ n) leads to a 2-cycle with κ(
−→
N ) =

[7 + 3n, 3 + 2n, 2 + n, 8 + 4n, 5 + 3n, 5 + 2n, 2 + n] corresponding to differences
(6+ 3n, 5+ 2n, 2+ n). (Note that if we put n = −1, 3+ 2n < 3+ n and the ordering
and the calculation is not valid).
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For B = 18+ 4n,
−→
N = [17+ 4n, 14+ 3n, 13+ 3n, 9+ 2n, , 8+ 2n, 5+ n, 2+ n]

with differences (15 + 3n, 9 + 2n, 5+ n) leads to a 4-cycle, as the reader can verify
directly.

For B = 23+4n,
−→
N = [22+4n, 18+3n, 16+3n, 11+2n, 11+2n, 5+n, 5+n],

with differences (17+ 3n, 13+ 2n, 5+ n) leads to a 8-cycle.
For B = 24 + 4n, we have a 19-cycle, starting with N with

−→
N = [23 + 4n,

19+3n, 17+3n, 12+2n, 11+2n, 7+n, 3+n] with differences (20+3n, 12+2n, 6+n).
(Alternate way to rule out this arithmetic progression for the Kaprekar phenomenon is
to note that we have 2 fixed points from families mentioned in Section 5.3: Put k = 4,
m = 6+ n in the first family there and r = 4, n = 1, k = 6+ n in the second).

For B = 4, it is easy to verify directly that it leads to the Kaprekar phenomenon
with K (4, 7) = 14565, which is [3, 2, 0, 3, 2, 1, 1].

For B = 2, we see below that there are 2 non-trivial fixed points.
So one is left to consider B = 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 19, 20. If we start

with N = 1, these exhibit n-cycles respectively for n being 2, 4, 2, 6, 7, 8, 14, 9, 8, 10,
11, 14, 13. �

4.3 Remark

Note that as B increases by 4, the differences change by (3, 2, 1). For D = 5, it was
(2, 1) for increase by 2, and for D = 3 it was 1 for 1. This leads to a guess that for
D = 2m + 1, and for large enough B, (after entering a cycle) the differences change
of (m,m − 1, . . . 1), for the increase of m + 1 in the base, leads to the same cycle
structure. In fact, the vector

−→
N increases by [m + 1,m,m,m − 1,m − 1, . . . , 1, 1] in

such a step.
If this is true, it is probably possible to prove it, even with an explicit lower bound

on B, without too much effort. Then for a given odd D, with only finitely many
corresponding B’s giving the Kaprekar phenomenon, we can prove this finiteness
effectively. We have not tried this, except in the next simplest case below.

4.4 D = 9

Theorem 5. For D = 9, Kaprekar phenomena occurs if and only if B = 5, in which
case [4, 3, 2, 0, 4, 3, 2, 1, 1] is the fixed point.

Proof. Let D = 9.
For B = 5n + 13, for n ≥ 4, we get two-cycle, starting from

−→
N = [12 + 5n,

12+ 4n, 8+ 4n, 9+ 3n, 4+ 3n, 8+ 2n, 3+ 2n, 3+ n, 1+ n].
For B = 5n + 12, n ≥ 3, we get two cycle, starting from

−→
N = [11 + 5n,

11+ 4n, 7+ 4n, 8+ 3n, 4+ 3n, 7+ 2n, 3+ 2n, 3+ n, 1+ n].
For B = 39 + 5n, n ≥ 0, we have a two-cycle, starting from

−→
N = [38 + 5n,

33+ 4n, 29+ 4n, 25+ 3n, 19+ 3n, 19+ 2n, 13+ 2n, 8+ n, 6+ n].
For B = 65 + 5n, n ≥ 0, we have a four-cycle, starting from

−→
N = [64 + 5n,

54+ 4n, 52+ 4n, 39+ 3n, 38+ 3n, 26+ 2n, 25+ 2n, 11+ n, 11+ n].
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For B = 41 + 5n, n ≥ 0, we have a six-cycle, starting from
−→
N = [40 + 5n,

32+ 4n, 32+ 4n, 25+ 3n, 22+ 3n, 18+ 2n, 15+ 2n, 9+ n, 7+ n].
The left-over finitely many cases, all for 5 �= B ≤ 60, are ruled out and B = 5 is

directly verified, just as in the proof of the previous theorem. �

We just mention one short-cut, or alternate to elimination: For B = 10+5n, n ≥ 0,
we have a fixed point [8+4n, 6+3n, 4+2n, 1+n, 9+5n, 7+4n, 5+3n, 3+2n, 2+n],
and for n even, another one [(B/2)2, B/2− 1, (B− 1)3, (B/2− 1)2, B/2], where we
use the short-from notation introduced in 2.1 for the repeated digits.

5. Kaprekar phenomena for fixed bases

5.1 B = 2, 3

Theorem 6. (i) The set F P(2, D) is never empty. It is singleton, if and only if
D = 2, 3, if and only if (2, D) is Kaprekar.

(ii) The set F P(3, D) empty if and only if D = 2, 3, 4, 6. It is singleton if and only if
D = 5, 7, 8, 9, 10, 12. The tuple (3, D) is Kaprekar if and only if D = 5, 8.

Proof. (i) follows from the immediately verified fact that for n > 1, [1n−1, 0, 1,
0n−1, 1], [0, 12n] ∈ F P(2, 2n + 1), and [1n−1, 0n, 1], [0, 12n−1] ∈ F P(2, 2n), and
the direct check (or using 3.1, 3.2) for D = 2, 3 (corresponding to n = 1, when the
two points coincide).

For B = 3, it’s easy to verify that for m > k > 0, [2k, 1m−k−1, 0, 2m−k, 1m−k,

0k−1, 1] ∈ F P(3, 3m−k). If D ≥ 15, we can write D = 3m−k = 3(m+1)−(k+3),
with k = 1, 2 or 3, so that m ≥ 6,m > k,m+ 1 ≥ 7 > k+ 3. Hence there are at least
two (non-trivial) fixed points for such (3, D). The same works for D = 14, 13, 11 by
using 14 = 3∗5−1 = 3∗6−4, 13 = 3∗5−2 = 3∗6−5, 11 = 3∗4−1 = 3∗5−4.
For D = 12, D ≤ 10, the rest of the claims can be easily checked by straight-forward
computer exhaustive check (which, with a little patience, can easily be done also by
hand in this case) for existence and uniqueness of fixed point. In more details, this
can be done by checking for the solutions to the corresponding equations, then in
singleton list, all except D = 5, 8 can be ruled out for Kaprekar phenomena. (There
are several short-cuts, for example, for D = 5n − 3, we get a 2-cycle, starting from
[23n−2, 12n−2, 0]. Often iterations starting with n = 1 exhibits eventually a cycle
of length more than one). Finally, D = 5, 8 can be directly verified for Kaprekar
phenomena. Thus (ii) follows. �

5.2 General Base B ≥ 4

Theorem 7. For a given base B > 1, there are only finitely many D such that
F P(B, D) is singleton or empty, and in particular, such that there is Kaprekar
phenomena for (B, D). In fact, if B ≥ 3, then for D > 4B − 6, there is at least
one element in F P(B, D), and for D > 8B − 12, there are at least two elements
in F P(B, D). For even B ≥ 4 and D ≥ B(B − 1), there are at least 2 elements in
F P(B, D)
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Proof. Now let B ≥ 3, and consider D = 2b(B − 2) + 2a + b, with a, b ≥ 1.
We exhibit a fixed point p, with −→p = [(B − 1)a, (B − 1)b, (B − 2)2b, . . . , 12b, 0a].
Here, p is given by (again with obvious modifications for B = 3)

[(B − 1)a, (B − 2)b, . . . , 2b, 1b−1, 0, (B − 1)b, . . . , 1b, 0a−1, 1].

Now we use the standard fact from elementary number theory that given relatively
prime m, n, any D > mn −m − n can be written as ma + nb, with integers a, b ≥ 0,
so with a, b ≥ 1 for D > mn and with a ≥ 1, b > 2 for D > mn + 2n. We use this
with m = 2, n = 2(B−2)+1. In the last case, we have D = 2a+b(2(B−2)+1) =
2(a+ 2(B− 2)+ 1)+ (b− 2)(2(B− 2)+ 1) giving the two fixed points and proving
the first part.

For the second part, with a slightly better bound for small B, we proceed as follows.
Let B ≥ 4 be even, and D ≥ B(B−1). Write D = n(B−1)+r , with 0 ≤ r ≤ B−2,
so that r + 2 ≤ B ≤ n. We exhibit two fixed points (straight-forward to verify) p, q,
with −→p = [(B − 1)n, . . . , 1n, 0r ] and −→q = [(B − 1)n−1, (B − 2)n, . . . , 1n, 0r+1].
In fact, for r ≥ 1 and for r = 0 respectively, we have

p = [(B − 1)r , (B − 2)n−r , . . . , 3r , 2n−r , 1r−1, 0, (B − 1)n−r ,

(B − 2)r , . . . , 1n−r 0r−1, 1],

p = [(B − 2)n, . . . , 2n−1, 1, (B − 1)n, . . . , 3n, 1n−1, 2],

with first portion up to digit 2 dropped for B = 4. Also, q is given by (with commas
dropped to save space),

[(B − 1)r+1(B − 2)n−r−2(B − 3)r+2 . . . 2n−r−21r+10

× (B − 1)n−r−2(B − 2)r+2 . . . 1n−r−20r 1],

with obvious modifications for B = 4. �

5.3 Fixed point families

We now give a few other general fixed point families, which once observed, are
straight-forward and easy to verify.

Jordan gives ordered form [km−1, (k−1)m, (k−1)m−1, (k−2)m, . . . ,m,m−1]
of an element in F P(km, 2k − 1). (See [J64]).

For D ≥ 6 even, Jordan gives a congruence class for moduli 105, 255, 257 such
that for B in it, there are at least 2 elements in F P(B, D).

Here is a more general situation. We claim that

[((r−1)k)n, ((r−2)k)n, . . . (2k)n, kn−1, k−1, (rk−1)n, ((r−1)k−1)n, . . . (2k−1)n,

(k − 1)n−1, k] ∈ F P(rk, (2r − 1)n), for r > 1. This is easy to verify, once observed.
This gives fixed points not only in odd number of digits, but in any non 2-power
number of digits, for basis which are multiples of certain number. If D has 2 distinct
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odd factors greater than 1, we get more than one fixed point for basis which are
multiples of certain numbers. Thus, for such families of (B, D)’s, there is no unique
cycle, and in particular, no Kaprekar phenomena.

Combining, we see that for D a non-trivial odd multiple of 3, we have at least 2
non-trivial fixed points for tuples (2km, D)’s, where we write D = 2k − 1 > 3. Also,
we see at least 2 non-trivial fixed points for (6k, 15n).

For D an even multiple of 3, we get arithmetic progressions of B, with the
constant difference 30, with at least 2 non-trivial fixed points for such (B, D)’s.
Jordan [J64] has already obtained for such D, arithmetic progressions of B with at
least 2 non-trivial fixed points. In our case, we just get better density of such B’s.

5.4 Some data and guesses

(1) The B showing Kaprekar phenomena are (i) For D = 6, only B = 13, 17 (with
respectively at most 22, 40 steps needed to reach the fixed point) among B ≤ 39,
(ii) For D = 7, only B = 4 (with at most 6 steps) among B ≤ 24, we have proved
this above except for the bound on the number of steps which can be directly verified,
(iii) For D = 8, only B = 3 (at most 6 steps) among B ≤ 17, (iv) For D = 9, only
B = 5 (at most 14 steps) among B ≤ 17. In most of the cases, just looking at the
iterations starting from 1, and observing them entering cycle of length more than 1
ruled out Kaprekar phenomena. Rarely, seeing a fixed point instead, we changed the
initial point.

The data suggests that probably the examples we found are the only ones, even if
we drop the bounds on B that we checked.

(2) For 6 ≤ D ≤ 13, and B ≤ 100, we ran program to see if iterations of the
process starting with initial point N = 1 reaches a fixed point in about 100 (or
400 for larger B) steps, in rare cases when it did, whether those survive with
N = 2, 3, 12 etc. Only Kaprekar phenomena found (other than that mentioned in
one and proved for D = 7) corresponded to κ(3, 8) = 5332 (6 steps), κ(5, 9) =
1831056 = [4, 3, 2, 0, 4, 3, 2, 1, 1] (14 steps), and κ(7, 11) = 19222633344 =
[0, 12, 2, 32, 4, 52, 62] (18 or 19 steps at most). (The last one was checked only for
N < 312 and some random other checks).

Writing more sophisticated cycle-detection program it should be easy to prove (or
disprove) that the examples we found are the only ones for the range of B, D’s we
consider, and to even extend this range.

(3) For D = 2, 7, 9 we have proved there is, and for D = 8, 11 there seems to be,
only one Kaprekar base each. For D = 6, there seem to be 2 Kaprekar bases. For
D = 4, there are (eventually) exponentially spread Kaprekar bases, while for D = 3, 5
they are spread (eventually) in arithmetic progression and there seem to be none for
D = 10, 12, 13.

5.5 Open questions

Some interesting open questions and projects, less ambitious than (0) the complete
understanding of all cycle structures for all (B, D), or even (i) characterization
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of all Kaprekar constants, but for which I would love to know the answer are
(ii) Characterization of (B, D) such that F P(B, D) is non-empty, or singleton,
or when there is unique (length more than one) cycle, (iii) What are (are there infinitely
many) D’s such that for some B (or for infinitely many B’s) there is a Kaprekar
phenomena? (iv) What are good estimates for the maximum number of iterations
needed to reach the Kaprekar constant, when the Kaprekar phenomenon happens, and
what are (some of) the numbers which need the maximum number of iterations?
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Let p be an odd prime. In this article we give a construction of the p-adic Rankin
product L-function which interpolates p-adically the special values of the convolution
of two cusp forms on the complex upper half plane. The argument given here closely
follows Panchishkin’s original argument [Pan88] where the S-adic non-archimedean
L-function associated to the Rankin product of two modular forms was constructed,
for S any set of finite primes including p. In this exposition we will specialize the
argument given in [Pan88] to the case S = {p}. We correct a sign error in the original
argument without which it does not seem possible to glue together the individual
measures constructed by Panchishkin at each point in the critical strip into a single
p-adic L-function, and also provide some background details along the way.

1. Introduction

1.1 Rankin product L-functions

Let N be an arbitrary natural number. We consider a cusp form f of weight k ≥ 2 for
the congruence subgroup �0(N) and nebentypus ψ . We suppose that f is a primitive
cusp form, i.e., it is a normalized newform of some level C f dividing N ; C f is called
the conductor of f . Let g be another primitive cusp form of conductor Cg and weight
2 ≤ l < k for �0(N) and nebentypus ω. We set e(z) = e2π i z and let

f (z) =
∞∑

n=1

a(n)e(nz), g(z) =
∞∑

n=1

b(n)e(nz) (1.1)

be the Fourier expansions of f and g. The Rankin convolution of the modular forms
f and g is defined by means of the equality

D(s, f, g) := L N (2s + 2− k − l, ψω)L(s, f, g), (1.2)

71
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where

L(s, f, g) =
∞∑

n=1

a(n)b(n)n−s,

and L N (2s + 2 − k − l, ψω) denotes the Dirichlet L-series with character ψω, and
the subscript N indicates that the factors corresponding to the prime divisors of N are
omitted from the Euler product. A classical method of Rankin and Selberg [Ran39]
enables one to construct an analytic continuation of the function D(s, f, g) to the
whole complex plane and prove that it satisfies a functional equation. Let

f ρ(z) :=
∞∑

n=1

a(n)e(nz), gρ(z) :=
∞∑

n=1

b(n)e(nz).

Further, define

�(s, f, g) = γ (s)D(s, f, g), (1.3)

where γ (s) = (2π)−2s�(s)�(s − l + 1) consists of �-functions. Though we do not
use it here,�(s, f, g) has a well-known functional equation. For instance, if ψ , ω and
ψ−1ω all have conductor N and C f = Cg = N , then the functional equation is (see
[Hid93, §9.5, Theorem 1]):

�(s, f ρ, g) = W ( f ρ, g)N3(−s+(k+l−1)/2)�(k + l − 1− s, f, gρ), (1.4)

where

W ( f ρ, g) = (−1)l	( f ρ)	(g)
G(ψ−1ω)

|G(ψ−1ω)| ,

G(ψ−1ω) is the Gauss sum associated to ψ−1ω and 	( f ρ), 	(g) are the root
numbers associated to f ρ , g respectively (defined in §2). Shimura [Shi77] established
the following algebraicity result for the special values of D(s, f, g) (see [Hid93,
§10.2, Theorem 1]): the numbers

�(s, f, g)(π1−l〈 f, f 〉C f )
−1 ∈ Q, (1.5)

for all integers l ≤ s ≤ k− 1. Here 〈 f, f 〉C f is the Petersson inner product defined by

〈 f, f 〉C f :=
∫

H/�0(C f )
| f (z)|2yk−2 dxdy, z = x + i y,

where H/�0(C f ) is a fundamental domain for the upper half plane H modulo the
action of �0(C f ). The integers s = l, . . . , k − 1 in (1.5) are “critical” in the sense of
Deligne [Del79]. They are precisely the values of s for which neither of the functions
γ (s) and γ (k + l − 1− s) in the functional equation have poles.
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1.2 Main theorem

Let Cp = Q̂p be the completion of the algebraic closure of Qp. Let | · |p be the norm
on Cp, normalized so that |p|p = 1/p. For any topological group G, let X (G) denote
the group of continuous homomorphisms from G to C×p . The domain of definition
of p-adic L-functions is the Cp-analytic Lie group X p = X (Z×p ), where Z×p is the
group of units of Zp. We put X tors

p = {χ ∈ X p | χ has finite order}. Let x p denote the
embedding Zp ↪→ Cp. For a precise statement of the results we introduce the notation

g(χ) :=
∞∑

n=1

χ(n)b(n)e(nz),

for the cusp form g twisted by the Dirichlet character χ . We fix an embedding of Q

into C and an embedding i p : Q ↪→ Cp. Then every Dirichlet character χ whose
conductor Cχ is a power of p can be identified with an element of X tors

p and vice versa.
By Theorem 2.6, with g(χ) replaced by gρ(χ), the numbers

�(l + r, f, gρ(χ))

π1−l〈 f, f 〉C f

∈ Q,

for r = 0, 1, . . . , k − l − 1. In this article we construct a Cp-analytic function on X p

which interpolates the numbers

i p

(
�(l + r, f, gρ(χ))

π1−l〈 f, f 〉C f

)

,

for all χ ∈ X tors
p and r = 0, 1, . . . , k − l − 1. We work under the assumption that f is

a p-ordinary form, i.e., a(p) is a unit in Cp. In other words

|i p(a(p))|p = 1. (1.6)

In addition, we suppose that

(C f ,Cg) = 1, (p,C f ) = (p,Cg) = 1, (1.7)

and we set C = C f Cg . Let α(p) denote the root of the Hecke polynomial
X2 − a(p)X + ψ(p)pk−1 for which |i p(α(p))|p = 1 and let α′(p) be the other root.
For every prime q � N , let

X2 − a(q)X + ψ(q)qk−1 = (X − α(q))(X − α′(q)),
X2 − b(q)X + ω(q)ql−1 = (X − β(q))(X − β ′(q)). (1.8)

We extend the definition of α(n) to all natural numbers of the form pr by setting
α(pr ) := α(p)r .

Theorem 1.1 (Main theorem). Under the assumptions (1.6) and (1.7), there exists
a unique measure μ on Z×p satisfying the following interpolation property: for all
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characters χ ∈ X tors
p and all integers r with 0 ≤ r ≤ k − l − 1, the value of the

function xr
pχ under the measure μ

∫

Z
×
p

xr
pχ dμ

is given by the image under i p of the following algebraic number

(−1)rω(Cχ)
G(χ)2Cl+2r−1

χ

α(C2
χ)

· �(l + r, f, gρ(χ))

π1−l〈 f, f 〉C f

.

This is exactly1 [Pan88, Thm. 1.4], noting that the extra Euler factors A(r, χ) there
do not appear here because S = {p}. Finally we remark that if μ is a Cp-valued
measure on Z×p , as in the main theorem above, then the function Lμ (the p-adic
L-function attached to μ) defined by

Lμ(χ) = μ(χ) =
∫

Z
×
p

χ dμ, ∀ χ ∈ X p, (1.9)

always turns out to be a Cp-analytic function Lμ : X p −→ Cp.
To make sense of the last statement we briefly recall the Cp-analytic structure on

X p = X (Z×p ). We set
U = {x ∈ Z

×
p | x ≡ 1 mod p},

units of Zp congruent to 1 mod p. Then we have the following decomposition

X p = X ((Z/pZ)×)× X (U ).

Therefore every χ ∈ X p can be written as χ0χ1 with χ0 ∈ X ((Z/pZ)×) and χ1 ∈
X (U ). The characters χ0 and χ1 are called the tame part and the wild part of the
character χ respectively.

We claim the function ϕ defined by ϕ(χ) := χ(1+ p), where 1+ p is a topological
generator of the group U , induces an isomorphism of groups

ϕ : X (U )
∼−→ T := {t ∈ C

×
p | |t − 1|p < 1}.

This isomorphism defines an analytic structure on X (U ), which can easily be checked
to be independent of the choice of generator 1 + p. We first check that ϕ is well
defined, i.e., ϕ takes values in T . Let χ ∈ X (U ). Since (1 + p)pn → 1 as n → ∞,
by the continuity of χ we have (χ(1 + p))pn → 1. Hence, |χ(1 + p)|p = 1 and
|χ(1+ p)−1|p ≤ max{|χ(1+ p)|p, 1} ≤ 1. We now claim that |χ(1+ p)−1|p < 1.
Suppose not, then |χ(1+ p)− 1|p = 1. Therefore

1 = |(χ(1+ p)− 1)pn |p

=
∣
∣
∣
∣
∣
∣

pn
∑

k=1

(
pn

k

)

(χ(1+ p)− 1)k

∣
∣
∣
∣
∣
∣

p

(

as p

∣
∣
∣
∣

(
pn

k

)

(χ(1+ p)− 1)k, ∀ 1 ≤ k < pn
)

1Except that we have added the sign (−1)r which we feel is necessary (see subsequent footnotes).
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= |(χ(1+ p)− 1+ 1)pn − 1|p
= |(χ(1+ p))pn − 1|p.

This contradicts (χ(1+ p))pn → 1. Hence |χ(1+ p)− 1|p < 1. We now show that
ϕ is an isomorphism. Every character χ ∈ X p is uniquely determined by χ(1 + p),
since 1 + p is a topological generator of U , hence ϕ is injective. For t ∈ T , define
χt ((1+ p)n) = tn , for all n ∈ Z . Extending χt to all of 1+ pZp by continuity we get
an element of X (U ) which maps to t under ϕ. Hence ϕ is also surjective. A function
F : T → Cp is said to be analytic if F(t) can be expressed as a power series, i.e.,
F(t) = ∑∞

i=0 ai (t − 1)i , ai ∈ Cp, which converges absolutely for all t ∈ T . The
isomorphism ϕ : X (U )  T allows us to define an analytic structure on X (U ). Finally
the notion of analyticity can be extended to all of X p by translation.

In closing this introduction, we remark that Hida [Hid88] subsequently constructed
a more general measure interpolating the critical Rankin product L-values of two cusp
forms which themselves vary in p-adic families,2 and in a different direction, Vienney
[Vie00] has generalized Panchishkin’s argument to cases where a(p) is not a p-adic
unit.3

1.3 Outline of the paper

We recall notation and results from the theory of modular forms in §2. In §3 we recall
generalities about distributions and measures and state a criterion for a distribution
whose values are known on a specific set of functions to be a measure in terms of
the abstract Kummer congruences. The measure in Theorem 1.1 is obtained from
certain complex-valued distributions �s , which we construct in §4 using the definition
of the convolution (1.2). The distributions �s take values in Q on X tors

p for integers
l ≤ s ≤ k − 1. In §5 we obtain an integral representation for these distribution values
using the Rankin-Selberg method and holomorphic projection. In §6 we prove that the
Cp-valued distributions i p(�s) satisfy the abstract Kummer congruences to finish the
proof of Theorem 1.1.

2. Background on Modular forms

In this section we recall a few results from the theory of classical modular forms.
Most of the material covered here is well known. In this section f and g are arbitrary
functions which need not satisfy the assumptions of §1 unless otherwise stated. Also,
χ , ψ , ω denote Dirichlet characters. Let M2(Z) denote the set of 2× 2 matrices with
entries in Z. Let SL2(Z) denote the set of matrices with determinant 1 in M2(Z). Let
C denote the complex plane. We write an element z ∈ C as x + i y, where x, y ∈ R

and i2 = −1. For z = x + i y ∈ C, sometimes we denote x and y by Re(z) and Im(z)
respectively.

2The sign mentioned in the previous footnote is consistent with the sign in [Hid88, Theorem I].
3Again, the author remarks that it is necessary to add a sign, see just below [Vie00, Defintion 4.1].
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2.1 Classical modular forms

Let H = {z ∈ C | Im(z) > 0} denote the complex upper half plane, on which the
group GL+2 (R) of real 2×2 matrices with positive determinant acts by fractional linear
transformations. For any natural number k, we have a weight k action of GL+2 (R) on
functions f : H→ C given by:

( f |kγ )(z) = (detγ )k/2(cz + d)−k f

(
az + b

cz + d

)

, ∀ γ =
(

a b
c d

)

∈ GL+2 (R).

For any natural number N , we have the following subgroups:

�0(N) =
{(

a b
c d

)

∈ SL2(Z) | c ≡ 0 mod N

}

,

�1(N) =
{(

a b
c d

)

∈ �0(N) | a ≡ d ≡ 1 mod N

}

,

�(N) =
{(

a b
c d

)

∈ �1(N) | b ≡ 0 mod N

}

.

Definition 2.1. A subgroup � of SL2(Z) is called a congruence subgroup if �(N) ⊂ �
for some N > 0. The smallest N satisfying this condition is called the level of the
congruence subgroup.

If � is a congruence group, then Mk(�) denotes the complex vector space of
modular forms of weight k for �. These consist of holomorphic functions f : H→ C

which satisfy f |kγ = f , for all γ ∈ �, and a holomorphicity condition at the cusps
of �. Let Sk(�) denote the subspace of cusp forms consisting of those f which in
addition vanish at the cusps.

Notation. Throughout the article we use the following notation:

(i) For every integer M , let S(M) denote the set of primes dividing M .
(ii) For every γ = (

a b
c d

) ∈ M2(Z), and Dirichlet character ψ we put ψ(γ ) = ψ(d).
(iii) Let χ0 denote the principal character on Z. It is given by χ0(n) = 1, ∀ n ∈ Z.

If ψ is a Dirichlet character mod N , we set

Mk(N, ψ) = { f ∈ Mk(�1(N)) | f |kγ = ψ(γ ) f, ∀ γ ∈ �0(N)},
Sk(N, ψ) = Sk(�1(N)) ∩ Mk(N, ψ).

For an arbitrary modular form h ∈ Mk(N, ψ) and a cusp form f ∈ Sk(N, ψ) with
k ≥ 1, the Petersson inner product is defined by the integral

〈 f, h〉N =
∫

H/�0(N)
f (z)h(z)yk−2 dxdy, (2.1)

where H/�0(N) is a fundamental domain for the upper half plane H modulo the
action of �0(N). Observe that if γ ∈ GL+2 (R) normalizes �0(N) and γ 2 is a scalar
matrix, then (see [Miy89, Theorem 2.8.2])

〈 f |kγ, h〉N = 〈 f, h|kγ 〉N . (2.2)
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For the rest of this subsection assume that M , N are positive integers such that
S(N M) = S(N). Since S(N M) = S(N) it can be checked that [�0(N) : �0(N M)] =
M and {

βu =
(

1 0
uN 1

) ∣
∣
∣
∣u = 1, . . . ,M

}

is a set of coset representatives for �0(N M)\�0(N). Therefore, for every γ ∈ �0(N)
and βu , there exists unique γu ∈ �0(N M) and βu′ such that βuγ = γuβu′ . Since βu ,
βu′ ≡ I2 mod N we have

γ ≡ βuγ = γuβu′ ≡ γu mod N .

For a Dirichlet character ψ modulo N and h ∈ Mk(N M, ψ) we have
(

M∑

u=1

h|kβu

)

|kγ =
M∑

u=1

h|kγuβu′ =
M∑

u=1

ψ(γu) · h|kβu′ = ψ(γ ) ·
M∑

u=1

h|kβu.

Therefore
∑M

u=1 h|kβu ∈ Mk(N, ψ). For M , N positive integers such that
S(N M) = S(N) and a Dirichlet character ψ modulo N , define the trace operator
T r N M

N : Mk(N M, ψ)→ Mk(N, ψ) by the equality

T r N M
N (h) =

M∑

u=1

h|kβu =
M∑

u=1

h|k
(

1 0
uN 1

)

. (2.3)

Remark 2.2. The definition of the trace above depends on the choice of coset
representatives {β1, . . . , βM} of �0(N M)\�0(N). In the computations below,
we always use this choice.

Lemma 2.3. Let ψ be a Dirichlet character modulo N. Let f ∈ Sk(N, ψ) and
h ∈ Mk(N M, ψ). If S(M) ⊂ S(N), then 〈 f, h〉N M = 〈 f, T r N M

N (h)〉N .

Proof. Let {β1, . . . , βM} be as above. If D is a fundamental domain for �0(N), then∐M
u=1 βuD is a fundamental domain for �0(N M). Therefore

〈 f, h〉N M =
∫

H/�0(N M)
f (z)h(z)yk−2 dxdy

=
M∑

u=1

∫

βuD
f (z)h(z)yk−2 dxdy

=
M∑

u=1

∫

D
( f |kβu)(z)(h|kβu)(z)y

k−2 dxdy

=
M∑

u=1

∫

D
f (z) (h|kβu)(z)y

k−2 dxdy

= 〈 f, T r N M
N (h)〉N . �
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For any integer k, complex number s and Dirichlet characters χ , ψ modulo L ,
M respectively, we define (see [Miy89, Chapter 7]) the non-holomorphic Eisenstein
series of weight k by

Ek(z, s;χ,ψ) = ys
∞∑′

c,d =−∞
χ(c)ψ(d)(cz + d)−k|cz + d|−2s , ∀ z ∈ H, (2.4)

where the prime means that the sum is over all (c, d) ∈ Z2\{(0, 0)}. The series
converges for Re(k + 2s) > 2 and can be continued meromorphically to the whole
complex plane as a function of s. Further, if k ≥ 3, then Ek(z, 0;χ, χ0) ∈ Mk(L , χ)
[Miy89, Lemma 7.1.4, Lemma 7.1.5].

2.2 Operators acting on modular forms

Let f ∈ Sk(N, ψ) be a cusp form with the Fourier expansion

f (z) =
∞∑

n=1

a(n)e(nz).

If d is a natural number, then define

f |Ud =
∞∑

n=1

a(dn)e(nz) = dk/2−1
∑

u mod d

f |k
(

1 u
0 d

)

,

f |Vd = f (dz) = d−k/2 f |k
(

d 0
0 1

)

∈ Sk(Nd, ψ),

f ρ(z) = f (−z) =
∞∑

n=1

a(n)e(nz) ∈ Sk(N, ψ),

f |wd = (
√

dz)−k f
(−1

dz

)
= f |k

(
0 −1
d 0

)

, f |wN ∈ Sk(N, ψ).

Also, the Hecke operators Tn : Mk(N, ψ) → Mk(N, ψ) are defined by (Tn f )(z) =∑∞
m=0 a(m, Tn f )e(mz), where a(m, Tn f ) =∑

0<d|(m,n) ψ(d)dk−1a(mn/d2).
When S(N M) = S(N), we have the following identity, which will be used for

explicit computations:

T r N M
N ( f ) = (−1)k M1−k/2 f |wN MUMwN , ∀ f ∈ Sk(N, ψ). (2.5)

The above identity follows from the definitions and the matrix identity:
(

1 0
uN 1

)

= −(N M)−1
(

0 −1
N M 0

)(
1 −u
0 M

)(
0 −1
N 0

)

.

Lemma 2.4. Let f (z) =∑∞
n=1 a(n)e(nz) ∈ Sk(N, ψ) and Ud, Vd, Tn be as above.

(1) If d2 | N and ψ is a Dirichlet character mod N/d, then f |Ud ∈ Sk(N/d, ψ).
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(2) For n ≥ 1, we have Tn( f ) =∑
ad=n ψ(d)d

k−1 f |UaVd. Hence, Tp = Up if p | N
is a prime.

Proof. Let

(
x y
z w

)

∈ �0(N/d) and 0 ≤ u, u′ < d . Then

(
1 u
0 d

)(
x y
z w

)(
1 u′
0 d

)−1

=
(

x + uz y+uw−(x+uz)u′
d

dz w − zu′
)

.

We observe that if d2 | N , then d | z and (x, d) = 1. So x + uz is a unit in Z/dZ.
Hence, for every 0 ≤ u < d , there exists unique u′ mod d such that d | (y + uw −
(x + uz)u′). This implies that for every u mod d there exist unique u′ mod d such that

(
xu yu

zu wu

)

:=
(

x + uz y+uw−(x+uz)u′
d

dz w − zu′
)

∈ �0(N).

Therefore

( f |Ud)|k
(

x y
z w

)

=
∑

u mod d

f |k
(

xu yu

zu wu

)(
1 u′
0 d

)

=
∑

u′ mod d

ψ(wu) f |k
(

1 u′
0 d

)

= ψ(w)
∑

u′ mod d

f |k
(

1 u′
0 d

)

(∵ wu ≡ w mod (N/d))

= ψ(w)( f |Ud).

Hence (1) follows. For the second statement we compare the Fourier expansion of
both sides. From the definition of Ua, Vd it follows that

∑

ad=n

ψ(d)dk−1 f |UaVd(z) =
∑

d|n
ψ(d)dk−1( f |Un/d)(dz) (substituting a = n/d)

=
∑

d|n
ψ(d)dk−1

∞∑

m=1

a(mn/d)e(mdz)

=
∑

d|n,d|m
ψ(d)dk−1

∞∑

m=1

a(mn/d2)e(mz)

=
∞∑

m=1

⎛

⎝
∑

d|(m,n)
ψ(d)dk−1a(mn/d2)

⎞

⎠ e(mz)

= (Tn f )(z). �
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Definition 2.5. We call an element f ∈ Sk(N, ψ) a primitive cusp form of conductor
N if the following conditions are satisfied:

(1) f is an eigenform, i.e., f (z) is an eigenvector for the Hecke operators Tn, for all
n ∈ N,

(2) a(1) = 1, where f (z) =∑∞
n=1 a(n)e(nz),

(3) f is a newform, i.e., it is orthogonal to all (old)forms lying in the images of the
maps Vd : Sk(N/d, ψ)→ Sk(N, ψ), for d | N, Cψ | (N/d), under 〈 , 〉N .

If f ∈ Sk(N, ψ) is a primitive cusp form, then Tq( f ) = a(q) f and f |Uq ′ =
Tq ′( f ) = a(q ′) f for all q � N and q ′ | N respectively. Hence, f is uniquely
determined by the eigenvalues of the Hecke operators Tn. Further, we also have the
following:

Euler Product L(s, f ) =
∞∑

n=1

a(n)e(nz) =
∏

q

(1− a(q)q−s + ψ(q)qk−1−2s ).

Functional Equation 	N (s; f ) = i k	N (k − s; f |wN ), where 	N (s; f ) =
(2π/
√

N )−s�(s)L(s, f ).

From the theory of newforms (see [Miy89, Theorem 4.6.15]) it follows that if
f ∈ Sk(N, ψ) is a primitive cusp form of conductor C f , then

f |wC f = 	( f ) f ρ, (2.6)

where 	( f ) is called the root number associated to f .
Let g ∈ Sk(N, ω) be a primitive cusp form of conductor Cg. If the conductor Cχ

of the primitive Dirichlet character χ is coprime to Cg, then the twisted cusp form
g(χ) ∈ Sk(CgC2

χ , ωχ
2) [Miy89, Lemma 4.3.10 (2)] is primitive, and

	(g(χ)) = ω(Cχ)χ(Cg)
G(χ)2

Cχ
	(g), (2.7)

where

G(χ) =
∑

u mod Cχ

χ(u)e2π iu/Cχ ,

is the Gauss sum [Miy89, Theorem 4.3.11].

2.3 Rankin-Selberg convolution

The proof of Theorem 1.1 makes constant use of the classical Rankin-Selberg method
(see [Ran39], [Ran52]). For the sake of completeness, we recall a few consequences
of the Rankin-Selberg method in this section. Let f ∈ Sk(N, ψ), g ∈ Sl(N, ω) be
primitive cusp forms. Let α(q), α′(q), β(q), β ′(q) be as in (1.8) for all q � N . Put
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α(q) = a(q) and β(q) = b(q) and α′(q) = β ′(q) = 0 for all q | N . Then the
L-function associated to f and g has the Euler product

L(s, f ) =
∞∑

n=1

a(n)n−s =
∏

q

[(1− α(q)q−s)(1− α′(q)q−s)]−1,

L(s, g) =
∞∑

n=1

b(n)n−s =
∏

q

[(1− β(q)q−s)(1− β ′(q)q−s)]−1. (2.8)

Before we state the result we introduce another class of Eisenstein series which are
different from (2.4). For every Dirichlet character ψ mod N , we set

Ek,N (z, s, ψ) = ys
∞∑′

c,d=−∞
ψ(d)(cN z + d)−k |cN z + d|−2s . (2.9)

Let f ∈ Sk(N, ψ) and g ∈ Sl(N, ω) be primitive cusp forms as in the Introduction
(so l < k) and let D(s, f, g) be as in (1.2). Then the Rankin-Selberg method states
that

(1) The Rankin product L-function has the Euler product

D(s, f, g) =
∏

q

[(1− α(q)β(q)q−s)(1− α(q)β ′(q)q−s)

× (1− α′(q)β(q)q−s)(1− α′(q)β ′(q)q−s)]−1. (2.10)

(2) For s ∈ C with Re(s) > 1+ k+l
2 , the Rankin product L-function D(s, f, g) has

the integral representation given by

2(4π)−s�(s)D(s, f, g) = 〈 f ρ, gEk−l,N (z, s − k + 1, ψω)〉N . (2.11)

We now state an algebraicity result for the Rankin product L-function which is crucial
for the construction of the p-adic Rankin product L-function, due to Shimura.

Theorem 2.6. ([Shi77, Theorem 4], [Hid93, §10.2, Corollary 1]) Let f ∈ Sk(N, ψ)
and g ∈ Sl(N, ω) be primitive cusp forms of conductor C f and Cg respectively. Then
for every Dirichlet character χ and for all integers s with l ≤ s ≤ k − 1, we have

�(s, f, g(χ))

π1−l〈 f, f 〉C f

∈ Q. (2.12)

2.4 Nearly holomorphic modular forms

In this section we recall some facts about nearly holomorphic modular forms due to
Shimura (see [Hid93, §10.1]).



82 Eknath Ghate and Ravitheja Vangala

The Maass-Shimura differential operator of weight k ∈ C on C∞-functions on H
is the operator:

δk = 1

2π i

(
k

2i y
+ ∂

∂z

)

, where z = x + i y,
∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)

. (2.13)

For every positive integer r , we define δr
k := δk+2r−2 ◦ · · · ◦ δk+2 ◦ δk and

δ0
k f = f . Let d := 1

2π i
∂
∂z . The Maass-Shimura differential operator satisfies the

following properties:

(1) δk+s( f g) = (δk f )g + f (δs g) = (δs f )g + f (δk g), ∀ s, k ∈ C,
(2) δk( f ) = y−kd(yk f ), ∀ k ∈ C,
(3) δr

k = δr−1
k+2 ◦ δk,

(4) δr
k( f ) =∑r

j=0

(r
j

)�(r+k)
�( j+k) (−4πy) j−rd j f, ∀ k ∈ C, r ∈ N.

Definition 2.7. Let k, r be non-negative integers. A function f : H→ C is said to be
a nearly holomorphic modular form of weight k and depth less than or equal to r for
the congruence subgroup �, if the following hold:

(1) f is smooth as a function of x and y,
(2) f |kγ = f , for all γ ∈ �,
(3) there exist holomorphic functions f0, . . . , fr on H such that f (z) =∑r

j=0(4πy)− j f j (z),
(4) f is slowly increasing, i.e., for every α ∈ SL2(Z), there exists positive real

numbers A and B such that |( f |kα)(z)| ≤ A(1 + y−B) as y→∞.

The space of nearly holomorphic modular forms of weight k and depth less than
or equal to r for the congruence subgroup � is denoted by N r

k (�). It is clear that for
r = 0 we obtain the space of (holomorphic) modular forms Mk(�). Let Nk(�) =
∪∞r=0N r

k (�), then ⊕∞k=0Nk(�) is a graded C-algebra. Further, let N r
k (N, χ) ={ f ∈ N r

k (�1(N)) | ( f |kγ )(z) = χ(γ ) f (z), ∀ γ ∈ �0(N)}.
We say a function h ∈ N r

k (�) is rapidly decreasing if for every B ∈ R and
α ∈ SL2(Z), there exists a positive constant A such that |(h|kα)(z)| ≤ A(1 + y B) as
y→∞. We denote the subspace of rapidly decreasing functions inN r

k (�), N r
k (N, χ)

and Nk(�) by NSr
k(�), NSr

k(N, χ) and NSk(�) respectively (cf. Lemma 2.15).

Lemma 2.8. If h : H → C is a C∞-function, then (δr
kh)|k+2rγ = δr

k(h|kγ ), for all
γ ∈ GL+2 (R).

Proof. By induction on r , it is enough to prove the lemma for r = 1 and for all k ∈ C,
that is,

(δkh)|k+2γ = δk(h|kγ ).
For γ =

(
a b
c d

)

∈ GL+2 (R), the left hand side is given by

((δkh)|k+2γ )(z) = 1

2π i

((
kh

2iIm(z)
+ ∂h

∂z

) ∣
∣
∣
k+2

γ

)

(z)
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= 1

2π i

(

(cz + d)−k−2 k

2iIm(γ z)
h(γ z)+ (cz + d)−k−2 ∂h

∂z
(γ z)

)

= 1

2π i

(

(cz + d)−k−2|cz + d|2 k

2i y
h(γ z)+ (cz + d)−k−2 ∂h

∂z
(γ z)

)

.

The right hand side is given by

δk(h|kγ )(z)
= δk((cz + d)−kh(γ z))

= 1

2π i

(
k

2i y
+ ∂

∂z

)

((cz + d)−kh(γ z))

= 1

2π i

(
k

2i y
(cz + d)−kh(γ z)− ck(cz + d)−k−1h(γ z)+ (cz + d)−k−2 ∂h

∂z
(γ z)

)

= 1

2π i

(
k

2i y
(cz + d)−k−1h(γ z)(cx + ciy + d − 2ciy)+ (cz + d)−k−2 ∂h

∂z
(γ z)

)

= 1

2π i

(
k

2i y
(cz + d)−k−2|cz + d|2h(γ z)+ (cz + d)−k−2 ∂h

∂z
(γ z)

)

,

which proves that (δkh)|k+2γ = δk(h|kγ ) and completes the proof. �

Let h : H→ C be a holomorphic function with h(z) =∑∞
n=0 a(n)e(nz/N). Then

e(−z/N)(h(z) − a0) is holomorphic on H ∪ {∞}. Thus, there exists a positive real
number C such that

|h(z)| ≤ |h(∞)| + Ce−2πy/N as y→∞. (2.14)

Proposition 2.9. For k, r ∈ N, the operator δr
k induces a linear map of C-vector

spaces δr
k : Mk(�)→ N r

k+2r (�).

Proof. Clearly δr
k is C-linear. So it is enough to show δr

k( f ) ∈ N r
k+2r (�),∀ f ∈ Mk(�). Let f ∈ Mk(�). Recall that

δr
k( f ) =

r∑

j=0

(
r

j

)
�(r + k)

�( j + k)
(−4πy) j−rd j f.

Clearly d j f is holomorphic and y j−r is smooth. Hence, δr
k( f ) satisfies (1) and (3) of

Definition 2.7. By Lemma 2.8, it follows that

(δr
k f )|k+2rγ = δr

k( f |kγ ) = δr
k( f ), for all γ ∈ �, (2.15)

hence (2) also holds. It remains to check that δr
k f is slowly increasing. If α ∈ SL2(Z),

then f |kα is also C∞, so

(δr
k f )|k+2rα = δr

k( f |kα) =
r∑

j=0

(
r

j

)
�(r + k)

�( j + k)
(−4πy) j−rd j ( f |kα).
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Note that the (−4πy) j−r are bounded as y→∞ and the d j ( f |kα) are holomorphic.
It follows from (2.14) that, for every 0 ≤ j ≤ r , there exists positive numbers A j , B j

such that |(−4πy) j−rd j ( f |kα)| ≤ A j (1 + e−2πy/B j ) as y → ∞. Since e−y decays
faster than y−n for any n ≥ 0 as y→∞, we have |(δr

k f )|k+2rα| ≤ Aα(1+ y−Bα) as
y→∞ for some positive numbers Aα , Bα. �

Now we will show that Ek(z, s;χ, χ0) is a nearly holomorphic modular form if χ is
a Dirichlet character modulo N and s ≤ 0 is an integer such that k+ 2s > 2. To prove
this, we need to consider the action of the Maass-Shimura operator on Eisenstein
series. Observe that for k, r positive integers and s ≤ 0 an integer such that k+2s > 2,
we have

δr
k(y

s) =
r∑

j=0

(
r

j

)
�(k + r)

�(k + j)
(−4πy) j−rd j ys

=
r∑

j=0

(
r

j

)
�(k + r)

�(k + j)
(−4πy) j−r

(−1

4π

) j �(s + 1)

�(s − j + 1)
ys− j

= (−4π)−r ys−rr!
r∑

j=0

(
k + r − 1

r − j

)(
s

j

)

= (−4π)−r �(s + k + r)

�(s + k)
ys−r , (2.16)

where the last equality follows by comparing the coefficient of Xr in
(1+ X)s(1+ X)k+r−1 and (1+ X)s+k+r−1.

For (c, d) ∈ Z2\{(0, 0)}, let γ = (
d −c
c d

)
. Since ys |kγ = (cz + d)−k |cz + d|−2s ys ,

we have

δr
k((cz + d)−k |cz + d|−2s ys)

= δr
k(y

s |kγ ) = δr
k(y

s)|k+2rγ (By Lemma 2.8)

(2.16)= (−4π)−r �(s + k + r)

�(s + k)
(ys−r )|k+2rγ

= (−4π)−r �(s + k + r)

�(s + k)
(cz + d)−k−2r |cz + d|−2(s−r) ys−r .

Let χ be a Dirichlet character modulo N . Multiplying both sides of the equation above
by χ(c) and then taking the sum over all (c, d) ∈ Z2\{(0, 0)} (ignoring convergence
issues) we get

(−4π)r
�(s + k)

�(s + k + r)
δr

k(Ek(z, s;χ, χ0)) = Ek+2r (z, s − r;χ, χ0). (2.17)

From [Miy89, Chapter 7] we know that if k ≥ 3, Ek(z, 0;χ, χ0) = ∑′
c,d χ(c)

(cz + d)−k is a usual holomorphic modular form in Mk(N, χ). It follows from (2.17)
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and Proposition 2.9 that for all integers r ≥ 0 and k ≥ 3:

Ek+2r (z,−r;χ, χ0) ∈ N r
k+2r (N, χ).

A similar argument for the Eisenstein series Ek,N (z, 0, χ) ∈ Mk(N, χ), k ≥ 3
(cf. (2.9)), gives:

Proposition 2.10. Let k, r be integers such that 0 ≤ r < k/2 − 1. If χ is a Dirichlet
character mod N, then Ek(z,−r;χ, χ0), Ek,N (z,−r, χ) ∈ N r

k (N, χ).

Theorem 2.11. ([Hid93, §10.1, Theorem 1]) Suppose that r ≥ 0 and k ≥ 1.
If f ∈ N r

k+2r (N, χ), then

f =
r∑

j=0

δ
j
k+2r−2 j h j , where h j ∈ Mk+2r−2 j (N, χ). (2.18)

More precisely,

N r
k+2r (N, χ)

∼= ⊕r
j=0Mk+2r−2 j (N, χ),

N Sr
k+2r (N, χ)

∼= ⊕r
j=0Sk+2r−2 j (N, χ),

and the isomorphism is obtained via f �→ (h j ), where h j are as in (2.18). Moreover
these isomorphisms are equivariant under the |k action of GL+2 (R).

The projection f �→ h0 induces a map

Hol : N r
k+2r (N, χ)→ Mk+2r (N, χ), (2.19)

which is called the holomorphic projection.

Lemma 2.12. Let f ∈ Sk(N, ψ) and let g : H → C be a smooth function which is
slowly increasing such that g|kγ = ψ(γ )g for every γ ∈ �0(N). Then 〈 f, g〉N :=∫
H/�0(N)

f (z)g(z)yk−2dxdy converges.

Proof. This follows from Lemma 2.15 (1) below and [Hid93, §9.3, (6)]. �

Lemma 2.13. Suppose f ∈ Sk(N, χ) and g ∈ N r
k (N, χ). If r < k/2, then 〈 f, g〉N =

〈 f,Hol(g)〉N . Further, if g ∈ N Sr
k (N, χ), then Hol(g) is the unique cusp form with

the property 〈 f, g〉N = 〈 f,Hol(g)〉N , ∀ f ∈ Sk(N, χ).

Proof. The first part follows from [Hid93, §10.1, Corolllary 1]. By Theorem 2.11,
we have Hol(g) ∈ Sk(N, χ). Now the first part shows that Hol(g) satisfies the
required property. From Lemma 2.12, we have f �→ 〈 f, g〉N defines an anti-linear
functional on Sk(N, χ). The uniqueness statement follows from the fact that Petersson
inner product induces a non-degenerate pairing 〈 , 〉N : Sk(N, χ)× Sk(N, χ)→ C.

�

Lemma 2.14. (Holomorphic Projection lemma) [Zag92, Appendix C] Let � be a
congruence subgroup and let Φ : H→ C be a smooth function satisfying:
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(1) Φ|kγ = Φ, ∀ γ ∈ � and ∀ z ∈ H,
(2) Φ(z) = c0 + O(y−ε) as y = Im(z)→∞,

for some integer k > 2 and numbers c0 ∈ C and ε > 0. If Φ(z) =∑∞
n=0 cn(y)e(nx),

then the function φ(z) :=∑∞
n=0 cne(nz) with

cn = (4πn)k−1

(k − 2)!

∫ ∞

0
cn(y)e

−2πny yk−2dy

for n > 0 belongs to Mk(�) and satisfies 〈 f, φ〉� = 〈 f, Φ〉�, ∀ f ∈ Sk(�).

Any rapidly decreasing function � : H → C which satisfies hypothesis (1) of
Lemma 2.14, automatically satisfies hypothesis (2) with c0 = 0. For such �, we set

Hol(�) := φ,
where φ is as defined in Lemma 2.14. It is easy to see that φ is a cusp form. Recall
that the elements of N Sr

k (N, χ) are rapidly decreasing. The definition of Hol given
just above in fact extends the definition of the holomorphic projection Hol given in
(2.19), by the uniqueness part of Lemma 2.13.

We now state a result which will enable one to apply the lemma above.

Lemma 2.15. Let k, N be a positive integers and χ a Dirichlet character mod N.
Then

(1) If h ∈ Sk(N, χ), then |(h|kγ )(z)| = O(y−B), for all positive real numbers B and
all γ ∈ SL2(Z), as y→∞. In particular h is rapidly decreasing.

(2) For any compact set T ⊂ R and γ ∈ SL2(Z), there exists positive real numbers A
and B such that if χ �= χ0

|Ek(z, s;χ, χ0)|kγ | ≤ A(1+ y−B), as y→∞ as long as Re(z) ∈ T .

Proof. Observe that if h ∈ Sk(N, χ), then h vanishes at the cusps. Now the first part
of the lemma follows from (2.14). For the second part see [Hid93, §9.3, Lemma 3].

�

It follows from Lemma 2.15 that if h is a (holomorphic) cusp form of weight
2 ≤ l < k (in our application below h will be the slash of a twist of g from
the Introduction), then h(z)Ek−l(z, s;χ, χ0) has weight k > 2 and satisfies the
hypotheses of Lemma 2.14, with c0 = 0. So Hol(h(z)Ek−l(z, s;χ, χ0)) is defined,
and we can calculate its Fourier expansion using Lemma 2.14 if we know the Fourier
expansion of h(z)Ek−l(z, s;χ, χ0).

3. Distributions and Measures

In this section, we define distributions and measures following [Pan88]. Most of
the material covered in this section can also be found in [Was97, MSD74]. Finally,
we state the abstract Kummer congruences which is the key tool used in the
construction of the p-adic L-function.
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3.1 Distributions

Let Y be a compact, Hausdorff and totally disconnected topological space. Then Y is
a projective limit of finite discrete spaces Yi ,

Y = lim←− Yi , (3.1)

with respect to transition maps πi j : Yi → Y j , for i ≥ j , i , j in some directed
set I . We assume that the πi j are surjections, so the canonical maps πi : Y → Yi are
projections. Let R be a commutative ring and let Step(Y, R) be the set of R-valued
locally constant functions on Y .

Definition 3.1. A distribution on Y with values in an R-module A is a homomorphism
of R-modules

μ : Step(Y, R)→ A.
We use the notation

μ(ϕ) =
∫

Y

ϕ dμ =
∫

Y

ϕ(y) dμ(y),

for ϕ ∈ Step(Y, R). Any distribution μ can be given by a system of functions
{μ(i) : Yi → A}, satisfying the following finite additivity condition:

μ( j)(y) =
∑

x∈π−1
i j (y)

μ(i)(x), ∀ y ∈ Y j , x ∈ Yi , i ≥ j. (3.2)

Indeed, given such a system of functions {μ(i) : Yi → A | i ∈ I }, if δi,x is the
characteristic function of the inverse image π−1

i (x) ⊂ Y , for x ∈ Yi , define

μ(δi,x) = μ(i)(x)
and extend the definition of μ to all of Step(Y, R) by linearity. Conversely, given
a distribution μ, in order to construct such a system, set μ(i)(x) = μ(δi,x) ∈ A,
∀ x ∈ Yi .

It can be checked that a system of functions {μ(i) : Yi → A} satisfies (3.2) if and
only if for all j ∈ I and all ϕ j : Y j → R,

the sum
∑

x∈Yi

ϕi (x)μ
(i)(x) does not depend on i, ∀ i ≥ j, (3.3)

where ϕi := ϕ j ◦ πi j : Yi → R. If μ is the corresponding distribution and
ϕ = ϕ j ◦ π j ∈ Step(Y, R), then μ(ϕ) is just the sum above. If Y = G = lim←− Gi

is a profinite abelian group and R is an integral domain containing all roots of unity
of order dividing the cardinality of G (perhaps a transfinite cardinal, in which case
R contains all roots of unity), then one needs to verify (3.3) only for all characters
of finite order χ : G → R×, since the orthogonality relations imply that their linear
span over R ⊗Q coincides with Step(Y, R ⊗Q) (see [MSD74]).
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Example 3.2. Let p be an odd prime. Then Z×p = lim←− (Z/pnZ)×. We consider

X p = X (Z×p ) = Homcont(Z
×
p ,C

×
p ), B = {χ ∈ X (Z×p ) | χ has finite order}.

We claim that B is a basis for Step (Z×p ,Cp) as a Cp-vector space. For every
x ∈ (Z/pnZ)×, let δn,x be the characteristic function of the basic open set
{a ∈ Z×p | a ≡ x mod pn}. Then, by the orthogonality relations, we have

δn,x = 1

ϕ(pn)

∑

χ∈X ((Z/pnZ)×)
χ̄ (x) χ.

Since every locally constant function Z×p → Cp is a Cp-linear combination of
characteristic functions, we see that B spans Step(Z×p ,Cp). For linear independence,
let χ1, . . . , χn ∈ B and suppose

∑n
i=1 aiχi = 0, with ai ∈ Cp. By choosing

m sufficiently large we may assume χi ∈ X ((Z/pmZ)×), for all i . By linear
independence of characters, we have ai = 0, for all i .

3.2 Measures

Let R be a topological ring with topology induced by a norm. Let C(Y, R) denote
the R-module of continuous R-valued functions on Y and equip C(Y, R) with the
corresponding sup norm topology. In this article we will take R = C (or) Cp (or)
Op := {x ∈ Cp | |x |p ≤ 1}.
Definition 3.3. A measure on Y with values in a topological R-module A is a
continuous homomorphism of R-modules μ : C(Y, R)→ A.

The restriction of a measure μ to the R-submodule Step(Y, R) ⊂ C(Y, R) is a
distribution, which we denote by the same symbol. Since Y is compact, we have
Step(Y, R) is dense in C(Y, R). So every measure is uniquely determined by its values
on Step(Y, R). We take for R a closed subring of Cp, and let A be a complete
R-module with topology induced by a norm | · |A on A. We further assume that | · |A
is compatible with | · |p, i.e., |ra|A = |r |p|a|A, for all r ∈ R and a ∈ A. Then the
condition that a distribution {μ(i) : Yi → A} gives rise to an A-valued measure on Y
is equivalent to the condition that the μ(i) are bounded, i.e., there is a uniform constant
B > 0 such that for all i ∈ I and all x ∈ Yi , we have |μ(i)(x)|A < B. The proof of this
fact is easy using the non-archimedean property and completeness of the norm | · |A
(see [Was97, Proposition 12.1]). In particular, if A = R = Op = {x ∈ Cp | |x |p ≤ 1}
is the ring of integers of Cp, then distributions are the same as measures. The most
important tool in the construction of the p-adic L-function is the following criterion
for the existence of a measure with prescribed properties.

Theorem 3.4. (The abstract Kummer congruences) ([Kat78, Proposition 4.0.6],
[CP04]) Let { fi } be a system of continuous Op-valued functions on Y such
that the Cp-linear span of { fi} is dense in C(Y,Cp). Let {ai} be any system of
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elements with ai ∈ Op. Then the existence of an Op-valued measure μ on Y (i.e.,
μ(C(Y,Op)) ⊂ Op) with the property that

∫

Y
fi dμ = ai

is equivalent to the following: for an arbitrary choice of elements bi ∈ Cp, almost all
of which vanish, and any n ≥ 0, we have the following implication of congruences:

∑

i

bi fi (y) ∈ pnOp, ∀ y ∈ Y �⇒
∑

i

bi ai ∈ pnOp. (3.4)

Proof. The necessity is obvious. Indeed if
∑

i bi fi (y) ∈ pnOp, then

∑

i

bi ai =
∑

i

∫

Y

bi fi dμ

= pn
∫

Y

(

p−n
∑

i

bi fi

)

dμ ∈ pnOp.

In order to prove the sufficiency we need to construct a measure μ from the
numbers ai . For a function f ∈ C(Y,Op) and a positive integer n, there exists
bi ∈ Cp such that bi = 0 for almost all i , and

f −
∑

i

bi fi ∈ C(Y, pnOp)

by the density of the Cp-span of the { fi } in C(Y,Cp). We now claim that the value∑
i biai belongs to Op and is well defined modulo pn , i.e., it doesn’t depend on the

choice of bi . Since f ∈ C(Y,Op), clearly
∑

i bi fi ∈ C(Y,Op). Therefore, by (3.4),
we have

∑
i bi ai ∈ Op. Let ci ∈ Cp be another set of numbers with ci �= 0 only for

finitely many i such that f −∑
i ci fi ∈ C(Y, pnOp). Then

∑

i

(ci − bi ) fi =
(

f −
∑

i

bi fi

)

−
(

f −
∑

i

ci fi

)

∈ C(Y, pnOp).

By (3.4), we have
∑

i ci ai ≡∑
i bi ai mod pnOp. Therefore,

∑
i bi ai is well defined

modulo pn. We denote this value by
∫

Y f dμ mod pn. Further, the above argument
shows (

∫
Y f dμ mod pn+1) ≡ (∫Y f dμ mod pn) mod pnOp. So we may define μ on

C(Y,Op) by
∫

Y
f dμ =

{(∫

Y
f dμ mod pn

)}

n≥1
∈ lim←−Op/pnOp = Op.

Since every element of C(Y,Cp) is bounded, by rescaling, the above definition of μ
extends to all of C(Y,Cp). A check shows μ : C(Y,Cp)→ Cp is a continuous linear
map, so μ is an Op-valued measure. Clearly

∫
Y fi dμ = ai . �



90 Eknath Ghate and Ravitheja Vangala

Recall that X p = Homcont(Z
×
p ,C

×
p ) has an analytic structure described in the

Introduction. If μ : C(Z×p ,Cp)→ Cp is a measure, then the non-archimedean Mellin
transform of μ, defined by

Lμ(χ) = μ(χ) =
∫

Z
×
p

χ dμ, ∀ χ ∈ X p, (3.5)

gives a bounded Cp-analytic function Lμ : X p −→ Cp (see [MSD74, §7.4], [Man73,
Theorem 8.7]). Here ‘analytic’ means that the integral (3.5) depends analytically on
the parameter χ ∈ X p. The converse is also true: any bounded Cp-analytic function on
X p is the Mellin transform of some measure μ. These measures with the convolution
operation form an algebra, which essentially coincides with the Iwasawa algebra (see
[CP04, §(1.4.3), §(1.5.2)]).

4. Construction of Complex-valued Distributions

From now on, let f and g be the primitive cusp forms as in the Introduction. In this
section we define two complex-valued distributions associated to f and g and compare
them.

Let p be a prime as in the Introduction. The p-stabilization of f is defined by

f0(z) = f (z)− α′(p) f (pz) = f (z)− α′(p)( f |Vp)(z), (4.1)

where as before f (z) = ∑∞
n=1 a(n, f )e(nz) ∈ Sk(C f , ψ). Let f0(z) =∑∞

n=1 a(n, f0)e(nz) be the Fourier expansion of f0. Comparing the Fourier
coefficients in (4.1), we get a(n, f0) = a(n, f ) − α′(p)a(n/p, f ). Hence, we have
the following identity for the corresponding Dirichlet series:

L(s, f0) =
∞∑

n=1

a(n, f0)n
−s

= (1− α′(p)p−s)

( ∞∑

n=1

a(n, f )n−s

)

= (1− α′(p)p−s)L(s, f ). (4.2)

From (4.1), it follows that f0 ∈ Sk(pC f , ψ) and from (2.8) and (4.2), we have

L(s, f0) = (1− α′(p)p−s)

⎛

⎝
∏

q prime

(1− α(q)q−s)−1(1− α′(q)q−s)−1

⎞

⎠

= (1− α(p)p−s)−1

⎛

⎜
⎜
⎝

∞∑

n=1
p�n

a(n, f )n−s

⎞

⎟
⎟
⎠ . (4.3)

Thus we have the following multiplicative relation

a(pr n, f0) = α(pr )a(n, f0) = α(p)r a(n, f0), ∀ r, n ≥ 0. (4.4)

Hence, f0 is a Up-eigenvector with eigenvalue α(p), i.e., f0|Up = α(p) f0.
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Recall g ∈ Sl(N, ω). From the definition of the operators wd and Vd given in
Section 2.2, one checks that

g|wAB = Al/2g|wBVA, (4.5)

where A, B are positive integers.
Recall that complex valued Dirichlet characters χ of p-power conductor are the

same as finite order characters χ : Z×p → C×. As in Example 3.2, we have B =
{χ : Z×p → C× of finite order} forms a basis of Step(Z×p ,C). Therefore every
complex-valued function on B extends to a complex-valued distribution on Z×p .

Let χ : Z×p → C× be a Dirichlet character of conductor Cχ . Then g(χ) =
∑∞

n=1 χ(n)b(n)e(nz) lies in Sl(CgC2
χ , ωχ

2), where here and below we use the
convention that χ(n) = 0 if n ∈ pZ.

For every s ∈ C, define a quantity �(M
′)

s (χ) as follows:

�(M
′)

s (χ) = (pM ′)s−l/2Cs−l/2
f χ(Cg)

	(g)α(pM ′) · �(s, f0|VC f , g(χ)|wC0 M ′)

π1−l〈 f, f 〉C f

, (4.6)

where C0, M ′ are natural numbers satisfying:

C0 = pC = pC f Cg, p2C2
χ |M ′ and S(M ′) = {p}. (4.7)

A priori, the definition of �(M
′)

s (χ) depends on M ′, though we show below that it

does not, whence �(M
′)

s extends to a (well-defined) complex-valued distribution on
Z×p . To do this, for each s ∈ C, consider the complex-valued distribution �s on Z×p
whose value on the Dirichlet character χ : Z×p → C× is given by:

�s(χ) := ω(Cχ)G(χ)2C2s−l−1
χ

α(Cχ)2
· �(s, f, gρ(χ))

π1−l〈 f, f 〉C f

. (4.8)

Proposition 4.1. Let p be an odd prime for which f is a p-ordinary form. Then for
every Dirichlet character χ : Z×p → C× and positive integer M ′ such that p2C2

χ | M ′
and S(M ′) = {p}, we have

�(M
′)

s (χ) = �s(χ).

In particular, �(M
′)

s does not depend on M ′.
Proof. First we simplify the right side of (4.6). From (1.2) and (1.3) it follows that

�(s, f0|VC f , g(χ)|wC0 M ′) = (2π)−2s�(s)�(s − l + 1)L pC(2s + 2− k − l, ψωχ2)

× L(s, f0|VC f , g(χ)|wC0M ′), (4.9)

noting that S(pC) = S(C0M ′), for the joint level C0M ′ of the forms f0|VC f and
g(χ)|wC0 M ′ . We define A(n) and B(n) to be the coefficients in the Dirichlet series

L(s, f0) =
∞∑

n=1

A(n)n−s ,
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L(s, g(χ)|wp2CgC2
χ
) =

∞∑

n=1

B(n)n−s. (4.10)

Then, by the multiplicative property (4.4), we have

A(Mn) = α(M)A(n), for all M such that S(M) = {p}. (4.11)

Let M1 be such that M ′ = pC2
χM1. Applying (4.5) with A = M1C f and B =

p2CgC2
χ , we get

g(χ)|wC0 M ′ = g(χ)|wM1C f p2Cg C2
χ
= (M1C f )

l/2g(χ)|wp2Cg C2
χ

VM1C f

= (M1C f )
l/2
∞∑

n=1

B(n)e(M1C f nz). (4.12)

We transform the last L-function in (4.9) as follows:

L(s, f0|VC f , g(χ)|wC0 M ′)
(4.12)= (M1C f )

l/2
∞∑

n=1

A(nC−1
f )B(nM−1

1 C−1
f )n

−s

= (M1C f )
l/2
∞∑

n=1

A(nM1)B(n)(nM1C f )
−s

(4.11)= (M1C f )
l/2−sα(M1)

∞∑

n=1

A(n)B(n)n−s

= (M1C f )
l/2−sα(M1)L(s, f0, g(χ)|wp2Cg C2

χ
)

= α(M ′)
α(pC2

χ)
·
(

M ′C f

pC2
χ

)l/2−s

L(s, f0, g(χ)|wp2Cg C2
χ
).

(4.13)

If we substitute (4.13) in (4.6), we see that (4.6) does not depend on M ′. In order
to obtain the more precise expression given by (4.8), it is enough to establish the
following equality:

�(s, f0, g(χ)|wp2Cg C2
χ
) = α(p)2 pl−2s	(g(χ))�(s, f, gρ(χ)), (4.14)

where 	(g(χ)) is the root number associated to g(χ), i.e., g(χ)|wCgC2
χ
=

	(g(χ))gρ(χ), since by (2.7), we have 	(g(χ)) = ω(Cχ)χ(Cg)G(χ)2C−1
χ 	(g).

To derive (4.14) we find an appropriate expression for g(χ)|wp2Cg C2
χ

. Applying

(4.5) once more with A = p2 and B = CgC2
χ , we get

g(χ)|wp2Cg C2
χ
= pl g(χ)|wCgC2

χ
Vp2 = pl	(g(χ))gρ(χ)|Vp2,
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so that

L(s, f0, g(χ)|wp2Cg C2
χ
) = pl	(g(χ))L(s, f0, gρ(χ)|Vp2).

A computation similar to that of (4.13) shows that

L(s, f0, gρ(χ)|Vp2) = p−2s L(s, f0|Up2, gρ(χ))

= α(p2)p−2s L(s, f0, gρ(χ)),

where we used f0|Up = α(p) f0 in the last step. Therefore

�(s, f0, g(χ)|wp2Cg C2
χ
) = α(p)2	(g(χ))pl−2s�(s, f0, gρ(χ)).

Substituting this in (4.14) we are reduced to proving

�(s, f0, gρ(χ)) = �(s, f, gρ(χ)).

From (4.1), it follows that

L(s, f0, gρ(χ)) = L(s, f, gρ(χ))− α′(p)L(s, f |Vp, gρ(χ))

= L(s, f, gρ(χ)) (∵ χ(p) = 0). (4.15)

Further, for every character χ : Z×p → C×, we have S(pC f CgC2
χ) = S(CC2

χ)

(except if χ is the trivial character) so that

L pC f Cg C2
χ
(2s + 2− k − l, ψωχ2) = LCC2

χ
(2s + 2− k − l, ψωχ2) (4.16)

in all cases (since if χ is the trivial character, χ(p) = 0). From (4.15) and (4.16),
it follows that �(s, f0, gρ(χ)) = �(s, f, gρ(χ)). Thus we obtain (4.14). �

We conclude this section by making an observation on the algebraicity of �(M
′)

s ,
which will be used in later sections.

Corollary 4.2. Let χ : Z×p → C× be a finite order character and M ′ as in

Proposition 4.1. Then for every integer s with l ≤ s ≤ k − 1, we have �(M
′)

s (χ) ∈ Q.

Proof. By Theorem 2.6, we have �s(χ) is algebraic for every integer s with l ≤ s ≤
k − 1. Hence, by the previous proposition, we have �(M

′)
s is also algebraic for every

integer s in the interval [l, k − 1]. �

Dirichlet characters actually take values in Q ⊂ C. Via our fixed embedding i p :
Q ↪→ Cp, we may think of them as Cp-valued. Moreover, by the corollary above we

may similarly think of �(M
′)

s as Cp-valued for s ∈ [l, k − 1]. Thus, for such s, all the
measures in this section can (and later will be) thought of as p-adic entities.
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5. Integral representation for Distributions

In this section we obtain an integral expression for the distribution �(M
′)

s given by
(4.6) involving the Petersson inner product of certain cusp forms. We also compute the
Fourier expansion of one of these cusp forms. This will be needed in the last section
in order to explicitly verify the Kummer congruences.

Recall the following classical integral formula of Rankin (cf. (2.11)). For
F ∈ Sk(N, ψ) and G ∈ Ml(N, ω), we have

�(s, F,G) = 2−1�(s − l + 1)π−s〈Fρ,G E(s − k + 1)〉N , (5.1)

where

Fρ(z) = F(−z) ∈ Sk(N, ψ),

E(z, s) = Ek−l,N (z, s, ψω) = ys
∞∑′

c,d=−∞
ψω(d)(cN z + d)−(k−l)|cN z + d|−2s .

Let χ : Z×p → C×p be a finite order character. Let M ′ be as in (4.7), i.e., p2C2
χ | M ′

and S(M ′) = {p}. We apply (5.1) with

N = C0C f M ′,

F = f0|VC f ∈ Sk(pC2
f , ψ) ⊂ Sk(C0C f M ′, ψ),

G = g(χ)|wC0 M ′ ∈ Sl(C0M ′, ωχ2) ⊂ Sl(C0C f M ′, ωχ2).

For every integer s such that l ≤ s ≤ k − 1, we transform the definition of the
distribution (4.6) by means of the equality

�(s, f0|VC f , g(χ)|wC0M ′) = 2−1�(s − l + 1)π−s〈 f ρ0 |VC f ,G E(s − k + 1)〉C0C f M ′ ,

where E(z, s − k + 1) = Ek−l,C0 C f M ′(z, s − k + 1, ψωχ2). If we set

K (s) = G · E(z, s),

then the formula for the values of the distribution (4.6) takes the form

�(M
′)

s (χ) = (pM ′)s−l/2Cs−l/2
f χ(Cg)	(g)

−1α(pM ′)−1

× 2−1�(s − l + 1)π−s 〈 f ρ0 |VC f , K (s − k + 1)〉C0C f M ′

π1−l〈 f, f 〉C f

. (5.2)

By Lemma 2.3 (with N = C0C f , M = M ′, f = f ρ0 |VC f and g = K (s)), we obtain

〈 f ρ0 |VC f , K (s)〉C0C f M ′ = 〈 f ρ0 |VC f , T r
C0C f M ′
C0C f

(K (s))〉C0C f

(2.5)= (−1)k M ′1−k/2〈 f ρ0 |VC f , K ′(s)|UM ′wC0C f 〉C0C f ,
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where K ′(s) = K (s)|wC0C f M ′ . Hence

�(M
′)

s (χ) = (−1)k ps−l/2 M ′(2s−l−k+2)/2Cs−l/2
f χ(Cg)	(g)

−1α(pM ′)−1

× 2−1�(s − l + 1)π−s 〈 f ρ0 |VC f , K ′(s − k + 1)|UM ′wC0C f 〉C0C f

π1−l〈 f, f 〉C f

.

(5.3)

Now we compute the Fourier coefficients of K ′(s) for special values of s (more
precisely, for l − k + 1 ≤ s ≤ 0, s ∈ Z). We rewrite K ′(s) as

K ′(s) = g′ · E ′(z, s),

where

g′ = g(χ)|wC0 M ′wC0C f M ′ and E ′(z, s) = E(z, s)|wC0C f M ′ .

It follows from the definition of wC0 M ′ , wC0C f M ′ that

g′ = (−1)lCl/2
f g(χ)|VC f . (5.4)

The Fourier expansion of the Eisenstein series E ′(z, s) will be computed in the next
section, from which we will obtain the Fourier expansion of K ′(s).

5.1 Fourier expansion of Eisenstein series

Here we follow [Miy89, §7.2] to compute the Fourier expansion of E ′(z, s).
The procedure given in [Miy89] describes the Fourier expansion of more general
Eisenstein series. Let H′ = {z ∈ C | Re(z) > 0} denote the right half plane. For
α ∈ C and β, z ∈ H′, the Whittaker function W (z;α, β) is defined by the following
integral:

W (z;α, β) = �(β)−1

∞∫

0

(u + 1)α−1uβ−1e−zu du. (5.5)

The convergence of the above integral follows from [Miy89, Lemma 7.2.1 (2)].

Lemma 5.1. The function W (z;α, β) can be continued analytically to a holomorphic
function on H′ × C×C satisfying:

(1) W (z;α, β) = z1−α−βW (z; 1− β, 1− α), ∀ (z, α, β) ∈ H′ ×C× C.
(2) W (z;α, 0) = 1, ∀ (z, α) ∈ H′ × C.
(3) W (y;α, β) = ∑r

i=0(−1)i
(r

i

)
yr−i �(α)

�(α−i)W (y;α − i, β + r), ∀ r ≥ 0, y ∈ R+,
(α, β) ∈ C×C.

Proof. Note that ω(z;α, β) defined by [Miy89, (7.2.31)] equals to zβW (z;α, β) for
all (z, α, β) ∈ H′×C×H′. The lemma now follows from [Miy89, Theorem 7.2.4 (1)],
[Miy89, Lemma 7.2.6] and [Miy89, (7.2.40)]. �
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By part (3) of Lemma 5.1, with β = −r , and by part (2), we obtain for all y > 0
that

W (y;α,−r) =
r∑

i=0

(−1)i
(

r

i

)
�(α)

�(α − i)
yr−i W (y;α − i, 0)

=
r∑

i=0

(−1)i
(

r

i

)
�(α)

�(α − i)
yr−i . (5.6)

Recall that the Eisenstein series Ek(z, s; θ, ϕ) for θ and ϕ Dirichlet characters mod L
and M respectively is defined by (cf. (2.4))

Ek(z, s; θ, ϕ) = ys
∞∑′

c,d=−∞
θ(c)ϕ(d)(cz + d)−k|cz + d|−2s .

We now state a result about the Fourier expansion of Eisenstein series.

Theorem 5.2. Let θ and ϕ be Dirichlet characters mod L and mod M, respectively,
satisfying θ(−1)ϕ(−1) = (−1)k. Then for any integer k, the Eisenstein series
Ek(z, s; θ, ϕ) can be analytically continued to a meromorphic function on the whole
s-plane and has the Fourier expansion

Ek(z, s; θ, ϕ) = C(s)ys + D(s)y1−k−s

+ A(s)ys
∞∑

n=1

an(s)(4π/M)se(nz/M)W (4πyn/M; k + s, s)

+ B(s)ys
∞∑

n=1

an(s)(4π/M)s+ke(−nz̄/M)W (4πyn/M; s, k + s),

where

C(s) =
⎧
⎨

⎩

2L M (2s + k, ϕ), if θ = χ0,

0, otherwise,

D(s) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2
√
πi−k ∏

p|M
(1− p−1)�(s)−1�(s + k)−1

× �
(

2s+k−1
2

)
�

(
2s+k

2

)
L L(2s + k − 1, θ),

if ϕ is the trivial

character mod M,

0, otherwise,

A(s) = 2k+1i−k G(ϕ0)(π /M)s+k�(s + k)−1,

B(s) = 21−k i−kϕ(−1)G(ϕ0)(π/M)s�(s)−1,

an(s) =
∑

0<c|n
θ(n/c)ck+2s−1

∑

0<d|(l,c)
dμ(l/d)ϕ0(l/d)ϕ0(c/d).
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Here ϕ0 denotes the primitive character associated with ϕ of conductor mϕ = M/ l
and μ is the Möbius function.

Proof. This is [Miy89, Theorem 7.2.9], noting that Ek(z, s; θ, ϕ) differs from
the one defined in [Miy89, (7.2.1)] by a factor of ys and ω(y;α, β) equals
yβW (y;α, β), ∀ (α, β) ∈ C× C. �

We apply the above theorem to compute the Fourier expansion of E ′(z, s). Recall

E ′(z, s) = E(z, s)|wC0C f M ′ = Ek−l,C0 C f M ′(z, s, ψωχ2)|wC0C f M ′

= (C0C f M ′)−(k−l+2s)/2 Ek−l (z, s;ψωχ2, χ0) (by direct computation).
(5.7)

For convenience we introduce the normalized Eisenstein series

G∗(z, s) = (C0C f M ′)(k−l+2s)/2�(k − l + s)

(−2π i)k−lπ s
E ′(z, s) (5.8)

(5.7)= �(k − l + s)

(−2π i)k−lπ s
Ek−l(z, s;ψωχ2, χ0). (5.9)

If s is an integer such that s ≤ 0 and k − l + s > 0, then from (5.9) and Theorem 5.2,
we have

G∗(z, s) = ε(k − l, y, s, ψωχ2)

+ 2(4πy)s
∞∑

n=1

∑

0<c|n
ψωχ2(n/c)ck−l+2s−1W (4πyn; k − l + s, s)e(nz)

= ε(k − l, y, s, ψωχ2)

+ 2(4πy)s
∞∑

n=1

∑

dd ′=n

ψωχ2(d ′)dk−l+2s−1W (4πyn; k − l + s, s)e(nz),

(5.10)

where here and below we take d , d ′ > 0 and

ε(k − l, y, s, ψωχ2) = �(k − l + s)

(−2π i)k−lπ s
(C(s)ys + D(s)y1−k+l−s),

with C(s), D(s) denoting the same constants as in Theorem 5.2 (corresponding to
θ = ψωχ2, ϕ = χ0). The term with z doesn’t appear as for such s we have B(s) = 0
because the Gamma function �(s) in the denominator of B(s) has a pole at s ≤ 0 and
the function an(s)W (4πyn/M; k + s, s) is holomorphic in s.



98 Eknath Ghate and Ravitheja Vangala

5.2 Integral representation via holomorphic projection

Taking s equal to s − k + 1 ≤ 0 in (5.8), we get4

E ′(z, s − k + 1) = (C0C f M ′)−(2s+2−k−l)/2(−1)k−l i k−l 2k−lπ s−l+1

× �(s − l + 1)−1G∗(z, s − k + 1). (5.11)

Substituting (5.11) and (5.4) into (5.3), and substituting C0 = pC = pC f Cg, we get

�(M
′)

s (χ) = 2k−l−1i k−l pk/2−1χ(Cg)C
(k+l−2)/2
f

α(pM ′)	(g)C(2s+2−k−l)/2

· 〈 f ρ0 |VC f , (g(χ)|VC f G∗(z, s − k + 1))|UM ′wC0C f 〉C0C f

〈 f, f 〉C f

= γ (M ′)〈 f, f 〉−1
C f
〈 f ρ0 |VC f

, K ∗(s − k + 1)|UM ′wC0C f 〉C0C f , (5.12)

in which we have set

γ (M ′) = 2k−l−1i k−l pk/2−1Cl−1
f C(l−k)/2

g α(pM ′)−1	(g)−1,

K ∗(s) = C−s
f C−s

g χ(Cg)g(χ)|VC f G∗(z, s). (5.13)

Observe that γ (M ′) is an algebraic number. Moreover, i p(γ (M ′)) is p-integral if
i p(	(g)) is a p-adic unit. One can check this last fact using explicit formulas for the
root number in terms of Gauss sums when the automorphic representation attached
to g has no supercuspidal local factors; it is apparently also true in general [Hid88,
(5.4a), (5.4b)]. In any case i p(γ (M ′)) is bounded independent of M ′, which is all we
shall need later.

It follows from (5.10) that for integers l − k < s ≤ 0 we have

K ∗(s) =
∞∑

n=1

∑

C f n1+n2=n

d(n1, n2; y, s)e(nz), (5.14)

where for p | n, the Fourier coefficients are given by5

d(n1, n2; y, s) = C−s
f C−s

g χ(Cg)χ(n1)b(n1)

× 2(4πy)s
∑

n2=dd ′
ψωχ2(d ′)d2s+k−l−1W (4πn2y, s − l + k, s).

(5.15)

4This formula differs from [Pan88, (4.22)] by (−1)s−k+1 and is the source of the sign discrepancy in Theorem 1.1
mentioned in the first footnote. With the sign as in (5.11), it becomes difficult to verify the abstract Kummer
congruences needed to prove [Pan88, (5.6)]. Instead, we shall later verify that (6.8) below holds.
5The formula differs from [Pan88, (4.27)] by (−1)s due to the sign error mentioned in the previous footnote.



p-Adic Rankin Product L-Functions 99

Here we used that if p | n, then there is no contribution to the coefficient of e(nz)
in K ∗(s) from the constant (n2 = 0) term of Eisenstein series G∗(z, s), because the
coefficient of e(C f n1z) in g(χ)|VC f is zero for p | n1 since χ(n1) = 0.

The expression (5.12) for �(M
′)

s (χ) involves K ∗(s − k + 1) whose Fourier
coefficients contain Whittaker functions which are difficult to handle. To get
rid of the Whittaker functions we consider its holomorphic projection. We first
check that Hol(K ∗(s − k + 1)) is defined. From Proposition 2.10, it follows
that if (k + l)/2 < s ≤ k − 1, then Ek−l(z, s − k + 1;ψωχ2, χ0) belongs
to N−s+k−1

k−l (C0C f M ′, ψωχ2), hence so does G∗(z, s − k + 1), by (5.9). Thus

K ∗(s − k + 1) ∈ N S−s+k−1
k (C0C f M ′, ψ) if s > (k + l)/2. So for such s one can

define the holomorphic projection Hol(K ∗(s − k + 1)) of K ∗(s − k + 1) in the
sense of Theorem 2.11. However, for l ≤ s ≤ (k + l)/2 it is not clear (to us) that
K ∗(s−k+1) is a nearly holomorphic form. So we cannot use Theorem 2.11 to define
the holomorphic projection of K ∗(s − k + 1) for l ≤ s ≤ (k + l)/2. Nevertheless, by
the discussion at the end of §2, we know that K ∗(s) is rapidly decreasing and satisfies
the hypotheses of Lemma 2.14, with c0 = 0. Thus one can define the holomorphic
projection of K ∗(s − k + 1) for any integer l ≤ s ≤ k − 1.

We now study:

K̃M ′(s) := Hol(K ∗(s))|UM ′ ,

for integers l − k + 1 ≤ s ≤ 0. We begin by computing the level and nebentypus
of K̃M ′(s). Since K ∗(s)|kγ = ψ(γ )K ∗(s) for all γ ∈ �0(C0C f M ′), we have
Hol(K ∗(s)) ∈ Sk(C0C f M ′, ψ), by the remarks after Lemma 2.14. As p2 | M ′ we
have Hol(K ∗(s))|Up ∈ Sk(C0C f M ′/p, ψ), by Lemma 2.4 (1). Repeatedly applying
Lemma 2.4 (1) we get Hol(K ∗(s))|UM ′ ∈ Sk(C0C f , ψ).

We now state the main result of this section.

Proposition 5.3. Let the notation be as above. For s ∈ Z with l ≤ s ≤ k − 1 one has
following equality

�(M
′)

s (χ) = γ (M ′)〈 f, f 〉−1
C f
〈 f ρ0 |VC f , K̃M ′(s − k + 1)|wC0C f 〉C0C f . (5.16)

Moreover, for s ∈ Z with l − k + 1 ≤ s ≤ 0 we have

K̃M ′(s) =
∞∑

n=1

∑

C f n1+n2=M ′n
d(n1, n2; s, χ)e(nz) ∈ Sk(C0C f , ψ) (5.17)

is a cusp form with algebraic Fourier coefficients given by6

d(n1, n2; s, χ)
= 2C−s

f C−s
g χ(Cg)χ(n1)b(n1)

∑

n2=dd ′
ψωχ2(d ′)d2s+k−l−1 Ps(n2,M ′n) (5.18)

6The formula differs from [Pan88, (4.29)] by the same sign as in the previous footnote.
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and

Ps(x, y) =
−s∑

i=0

(−1)i
(−s

i

)
�(s + k − l)�(k − i − 1)

�(s + k − l − i)�(k − 1)
x−s−i yi

= x−s + y

�(k − 1)
Qs(x, y), where s ≤ 0 and Qs(x, y) ∈ Z[x, y].

(5.19)

Proof. The proof of the lemma is an application of the holomorphic projection lemma
(Lemma 2.14). We first note that Hol commutes with the action of the wN -operator.
Indeed, by Lemma 2.14 and (2.2), we have

〈h,Hol(�|wN )〉N = 〈h, �|wN 〉N = 〈h|wN , �〉N
= 〈h|wN ,Hol(�)〉N = 〈h,Hol(�)|wN 〉N ,

for all modular rapidly decreasing� and all cusp forms h of weight k and level N ≥ 1,
whence Hol(�|wN ) = Hol(�)|wN . A similar argument shows that Hol commutes
with the Up-operator. Thus, by Lemma 2.13 and Lemma 2.14, we have

〈 f ρ0 |VC f , K ∗(s − k + 1)|UM ′wC0C f 〉C0C f

= 〈 f ρ0 |VC f ,Hol(K ∗(s − k + 1)|UM ′wC0C f )〉C0C f

= 〈 f ρ0 |VC f ,Hol(K ∗(s − k + 1))|UM ′wC0C f 〉C0C f

= 〈 f ρ0 |VC f , K̃M ′(s − k + 1)|wC0C f 〉C0C f .

Substituting the above expression in (5.12), we obtain (5.16). It follows from (5.14),
(5.15) that

K ∗(s)|UM ′ = M ′k/2−1
∑

u mod M ′
K ∗(s)|

(
1 u
0 M ′

)

(5.14)= M ′−1
∑

u mod M ′

∞∑

n=1

∑

C f n1+n2=n

d(n1, n2; y/M ′, s)e(n(z + u)/M ′)

=
∞∑

n=1

∑

C f n1+n2=n

d(n1, n2; y/M ′, s)e(nz/M ′)M ′−1
∑

u mod M ′
e(un/M ′)

=
∞∑

n=1

∑

C f n1+n2=M ′n
d(n1, n2; y/M ′, s)e(nz). (5.20)

Now we use Lemma 2.14 to compute the Fourier coefficients of K̃M ′(s − k + 1) =
Hol(K ∗(s−k+1)|UM ′) for l ≤ s ≤ k−1. Let s′ = s−k+1 then l−k+1 ≤ s′ ≤ 0.
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From (5.20) and Lemma 2.14 it follows that

K̃M ′(s
′) =

∞∑

n=1

∑

C f n1+n2=M ′n

(4πn)k−1

�(k − 1)

×
⎛

⎝

∞∫

0

d(n1, n2; y/M ′, s′)e−2πnye−2πny yk−2 dy

⎞

⎠ e(nz). (5.21)

Note that if C f n1 + n2 = M ′n, the quantity d(n1, n2; y/M ′, s) is as in (5.15), with y
replaced by y/M ′, because p | M ′n, since p | M ′. We get

d(n1, n2; s′, χ)

:= (4πn)k−1

�(k − 1)

∫ ∞

0
d(n1, n2; y/M ′, s′)e−4πny yk−2dy,

= 2(C f Cg)
−s′χ(Cg)χ(n1)b(n1)

∑

n2=dd ′
ψωχ2(d ′)d2s′+k−l−1

× (4πn)k−1

�(k − 1)

∞∫

0

(
4πy

M ′

)s′

W

(
4πn2y

M ′
, s′ + k − l, s′

)

e−4πny yk−2dy. (5.22)

Since l − k + 1 ≤ s′ ≤ 0, we can use (5.6) to compute W (4πn2 y/M ′, s′ + k − l, s′).
We obtain

(4πn)k−1

�(k − 1)

∞∫

0

(
4πy

M ′

)s′

W

(
4πn2y

M ′
, s′ + k − l, s′

)

e−4πny yk−2dy

=
−s′∑

i=0

(−1)i
(−s′

i

)
�(s′ + k − l)

�(s′ + k − l − i)�(k − 1)

×
∞∫

0

(4πn)k−1
(

4πy

M ′

)s′ (4πn2y

M ′

)−s′−i

e−4πny yk−2dy

=
−s′∑

i=0

(−1)i
(−s′

i

)
�(s′ + k − l)

�(s′ + k − l − i)�(k − 1)
n−s′−i

2 M ′i

×
∞∫

0

(4πny)k−1(4πy)−i e−4πny dy

y

=
−s′∑

i=0

(−1)i
(−s′

i

)
�(s′ + k − l)

�(s′ + k − l − i)�(k − 1)
n−s′−i

2 (M ′n)i
∞∫

0

yk−1 y−i e−y dy

y
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=
−s′∑

i=0

(−1)i
(−s′

i

)
�(s′ + k − l)�(k − i − 1)

�(s′ + k − l − i)�(k − 1)
n−s′−i

2 (M ′n)i

= Ps′(n2,M ′n).

Therefore, for every n1, n2 such that C f n1 + n2 = M ′n, (5.22) becomes

d(n1, n2; s′, χ)
= 2(C f Cg)

−s′χ(Cg)χ(n1)b(n1)
∑

n2=dd ′
ψωχ2(d ′)d2s′+k−l−1 Ps′(n2,M ′n).

Substituting the above expression in (5.21) finishes the proof. �

6. Kummer congruences for the distributions

In this section, we show that the distributions in (4.6) for s = l + r , where 0 ≤ r ≤
k−l−1 patch together into a measure, by verifying the abstract Kummer congruences.

By Proposition 5.3, with s = l + r , where 0 ≤ r ≤ k − l − 1, we have

�
(M ′)
l+r (χ) = γ (M ′)〈 f, f 〉−1

C f
〈 f ρ0 |VC f , K̃M ′(r − k + l + 1)|wC0C f 〉C0C f

(2.2)= γ (M ′)〈 f, f 〉−1
C f
〈 f ρ0 |VC f wC0C f , K̃M ′(r − k + l + 1)〉C0C f . (6.1)

By Corollary 4.2 and (5.13), we have �(M
′)

s (χ) and γ (M ′) are algebraic numbers.
Hence

〈 f, f 〉−1
C f
〈 f ρ0 |VC f , K̃M ′(r − k + l − 1)|wC0C f 〉C0C f ∈ Q. (6.2)

Further, note that the cusp form K̃M ′(r − k+ l+ 1) has algebraic Fourier coefficients.
Let

Sk(C0C f , ψ;Q) = {h ∈ Sk(C0C f , ψ) | h has algebraic Fourier coeffecients}.
We now claim that f ρ0 |VC f wC0C f ∈ Sk(C0C f , ψ;Q). Clearly f ρ0 |VC f wC0C f belongs
to Sk(C0C f , ψ). So it is enough to show that the Fourier coefficients of f ρ0 |VC f wC0C f

are algebraic. Observe that

f ρ0 |VC f wC0C f

(4.1)= f ρ |VC f wC0C f − α′(p) f ρ|VpVC f wC0C f

= C−k/2
f f ρ |wC0 − α′(p)(pC f )

−k/2 f ρ|wC f Cg

(from the definition of Vp, VC f , wC0C f )

(4.5)= (pCgC−1
f )

k/2 f ρ |wC f VpCg − α′(p)(pC f C−1
g )−k/2 f ρ |wC f VCg
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(2.6)= (pCgC−1
f )

k/2	( f ρ) f ρ|VpCg − α′(p)(pC f C−1
g )−k/2	( f ρ) f ρ|VCg .

Since f is primitive, it follows that f ρ0 |VC f wC0C f has algebraic Fourier coefficients.
Define the linear functional L : Sk(C0C f , ψ) −→ C, by

L(K ) = 〈 f ρ0 |VC f wC0C f , K 〉C0C f

〈 f, f 〉C f

. (6.3)

We note from (6.1) and (6.3) that, for every finite order character χ : Z×p → C×,

�
(M ′)
l+r (χ) = γ (M ′)L(K̃M ′(r − k + l + 1)). (6.4)

Lemma 6.1. Let L be defined as above. Then

(1) L is defined over Q, i.e., L(Sk(C0C f , ψ;Q)) ⊂ Q.
(2) Let K (z) = ∑∞

n=1 a(n, K )e(nz) be an element of Sk(C0C f , ψ;Q). Then there
exists m ∈ N and ξ1, . . . , ξm ∈ Q such that

L(K ) =
m∑

n=1

ξna(n, K ). (6.5)

Proof. Choose an orthogonal basis f1, . . . , fd of Sk(C0C f , ψ;Q) such that
f1 = f ρ0 |VC f wC0C f . By Proposition 5.3, we know that K̃M ′(r − k + l + 1) ∈
Sk(C0C f , ψ;Q) for all integers 0 ≤ r ≤ k−l−1. Let K̃M ′(r−k+l+1) =∑d

i=1 ci fi ,
for some ci ∈ Q. It follows from (6.2) and orthogonality that

L(K̃M ′(r − k + l + 1)) = c1L( f ρ0 |VC f wC0C f ) ∈ Q.

Choose r , χ such that �(M
′)

l+r (χ) = γ (M ′)L(K̃M ′(r − k + l + 1)) �= 0. Such a choice
exists, otherwise all the twisted L-values of the Rankin product L-function vanish by
(4.8) and Proposition 4.1, so the p-adic Rankin product L-function, or more precisely
the measure μ in Theorem 1.1, can be taken to be identically zero. Hence, c1 �= 0 and
L( f ρ0 |VC f wC0C f ) ∈ Q. Therefore L(Sk(C0C f , ψ;Q)) = QL( f ρ0 |VC f wC0C f ) = Q.
This finishes the proof of the first part.

Let Tk(C0C f , ψ) denote the Q-subalgebra of EndC(Mk(C0C f , ψ)) generated by
the Hecke operators Tn , for all n ∈ N. Clearly Tk(C0C f , ψ) is a finite dimensional
Q-vector space. By [Miy89, Theorem 4.5.13] and [Miy89, (4.5.27)] we obtain that
{Tn}n∈N spans Tk(C0C f , ψ) as a Q-vector space. Hence, by finite dimensionality,
there exists m such that T1, . . . , Tm span Tk(C0C f , ψ) as a Q-vector space. There is
an isomorphism of Q-vector spaces given by (see [Gha02, Lemma 2])

Tk(C0C f , ψ) −→ Hom
Q
(Sk(C0C f , ψ;Q),Q)

T �→ a(1, T f ).
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By the first part of the lemma we know that L ∈ Hom
Q
(Sk(C0C f , ψ;Q),Q).

Therefore, L(K ) = a(1, T K ), for some T ∈ Tk(C0C f , ψ). Since T1, · · · , Tm

span Tk(C0C f , ψ) as Q-vector space, there exists ξ1, . . . , ξm ∈ Q such that,
T = ∑m

n=1 ξnTn. So L(K ) = ∑m
n=1 ξna(1, Tn K ) = ∑m

n=1 ξna(n, K ), ∀ K ∈
Sk(C0C f , ψ;Q). �

As mentioned earlier, every complex-valued Dirichlet character χ on Z×p takes

values in Q ⊂ C. From now on we think of such character as taking values in Cp via
our fixed embedding i p : Q → Cp. Since �l+r (χ) ∈ Q, for 0 ≤ r ≤ k − l − 1,
by Corollary 4.2, we have i p(�l+r (χ)) ∈ Cp. Thus we may think of the complex
distribution �l+r , as a Cp-valued distribution. We shall denote these distributions by
i p(�l+r ), for 0 ≤ r ≤ k − l − 1.

We now define a candidate for the measure in Theorem 1.1, namely we take

μ := i p(�l). (6.6)

By Proposition 4.1 and (6.4), we have

�l+r (χ) = γ (M ′)L(K̃M ′(r − k + l + 1))

= γ (M ′)
m∑

n=1

ξn a(n, K̃M ′(r − k + l + 1)) (by Lemma 6.1 (2))

= γ (M ′)
m∑

n=1

ξn

∑

C f n1+n2=M ′n
d(n1, n2; r − k + l + 1, χ), (6.7)

by Proposition 5.3, where M ′ is a sufficiently large power of p chosen depending
on χ , and γ (M ′) is as defined in (5.13). As remarked earlier, γ (M ′) is p-integral
in many cases (apparently in all), but in any case has bounded denominator, coming
from 	(g), since α(pM ′) is a p-adic unit. Similarly, the ξn ∈ Q have bounded
denominators. Finally the d(n1, n2; s, χ) also have denominators at worst �(k − 1)
by (5.18), (5.19). Hence multiplying i p(�l+r ) by a suitable (fixed) power of p we
may and do assume that i p(�l+r (χ)) lies in Op for all χ . Proving that this rescaled
distribution is an Op-valued measure will imply that i p(�l+r ) is a (not necessarily
Op-valued) measure.

Proposition 6.2. For all integers 0 ≤ r ≤ k − l − 1, we have

(1) The Cp-valued distributions i p(�l+r ) are bounded. Hence, i p(�l+r ) are
measures on Z×p .

(2) Moreover, with μ as in (6.6), the following equality holds7

∫

Z
×
p

χxr
p dμ = (−1)r

∫

Z
×
p

χdi p(�l+r ). (6.8)

7The formula (6.8) differs from [Pan88, (5.6)] by the factor (−1)r . This factor is forced on us in view of the sign
corrections mentioned in the previous footnotes. Moreover, this sign has theoretical significance: (6.8) matches
with a general expectation about measures attached to L-functions of motives [CP89, (4.16)].
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Proof. Fix an integer 0 ≤ r ≤ k − l − 1. Recall that the linear span of B = {χ | χ :
Z×p → C×p has finite order } is dense in C(Z×p ,Cp). We claim that the distribution
i p(�l+r ) satisfies the abstract Kummer congruences (3.4) with B as the system of
functions. We need to prove that for every finite set of characters χ1, . . . , χt ∈ B,
constants c1, . . . , ct ∈ Cp and m ≥ 0,

if
t∑

i=1

ciχi ≡ 0 (mod pm), then
t∑

i=1

ci i p(�l+r (χi)) ≡ 0 (mod pm).

Choose M ′ sufficiently large so that (6.7) holds for each of the χi . By (6.7), this is
equivalent to proving

if
t∑

i=1

ciχi ≡ 0 (mod pm), then
t∑

i=1

ci d(n1, n2; r − k + l + 1, χ) ≡ 0 (mod pm)

(6.9)

for each n, and each n1, n2 satisfying C f n1 + n2 = M ′n.
If p | n1, then d(n1, n2; r − k + l + 1, χi) = 0, by (5.18), since χi (n1) = 0. So,

the relation (6.9) is trivially true. Hereafter, we assume p � n1. Since p � C f , p | M ′
and C f n1 + n2 = M ′n, we have p | n1 if and only if p | n2. So we have p � n2 and
d/d ′C is a p-adic unit, for dd ′ = n2. Let s = r − k + l + 1. We may also assume M ′
has been chosen large enough so that pm | M ′/�(k−1). From (5.19) and the equality
C f n1 + n2 = M ′n, it follows that

Ps(n2,M ′n) ≡ nk−l−1−r
2 ≡ (dd ′)k−l−1−r (mod pm),

χ(n1) = χ(−C f )χ(n2) = χ(−C f )χ(dd ′). (6.10)

By (5.18) and (6.10), we have the congruence

d(n1, n2; r − k + l + 1, χ)

≡ 2χ(−C)Ck−l−r−1b(n1)
∑

n2=dd ′
ψωχ(d ′)χ(d)(d ′)k−l−r−1dr (mod pm).

Therefore,

(−1)r
t∑

i=1

ci d(n1, n2; r − k + l + 1, χi)

≡ 2b(n1)
∑

n2=dd ′
ψω(d ′)(d ′C)k−l−1

t∑

i=1

ciχi

(−d

d ′C

)(−d

d ′C

)r

(mod pm).

(6.11)

By assumption,
∑

i ciχi ≡ 0 (mod pm), so
∑

i ciχi (−d/d ′C) ≡ 0 (mod pm). Since
each −d/d ′C is a p-adic unit, we obtain

∑t
i=1 ci d(n1, n2; r − k + l + 1, χi ) ≡

0 (mod pm). Thus (6.9) holds and this finishes the proof of (1).
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For (2), we claim there exists a Cp-valued measure ν such that

∫

Z
×
p

χxr
p dν = (−1)r

∫

Z
×
p

χ di p(�l+r ), ∀ 0 ≤ r ≤ k − l − 1.

Let B′ = {χxr
p | χ ∈ B and 0 ≤ r ≤ k−l−1}. To prove the existence of this measure,

it is enough to verify the abstract Kummer congruences hold for B′ as the system of
functions. As in (1), we need to prove for every finite set of characters χi ∈ B′ and
ci,r ∈ Cp,

if
∑

i,r

ci,rχi x
r
p ≡ 0 (mod pm), then

∑

i,r

(−1)r ci,r d(n1, n2; r − k + l + 1, χi) ≡ 0 (mod pm). (6.12)

As observed above, if p | n1, then d(n1, n2; r − k + l + 1, χi) = 0, so (6.12) holds.
For p � n1, it follows from (6.11) that

∑

i,r

(−1)r ci,r d(n1, n2; r − k + l + 1, χi)

≡
∑

n2=dd ′
2b(n1)ψω(d

′)(d ′C)k−l−1

⎛

⎝
∑

i,r

ci,rχi

(−d

d ′C

)(−d

d ′C

)r
⎞

⎠ (mod pm).

By the assumption in (6.12), the inner sum is congruent to 0 (mod pm). Thus

∑

i,r

(−1)r ci,r d(n1, n2; r − k + l + 1, χi ) ≡ 0 (mod pm),

so again (6.12) holds. This proves that ν as claimed above exists. Further μ and ν
agree on B (take r = 0) which spans Step(Z×p ,Cp). Hence μ = ν. This completes
the proof of (2). �

Let μ be the distribution in (6.6). By Proposition 6.2 (1) with r = 0, we see that μ is
a measure. By (6.8), and (4.8) with s = l + r , we see that μ satisfies the interpolation
property8 of Theorem 1.1. This completes the proof of Theorem 1.1.
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Abstract. We give a lower bound on the Faltings height of an abelian variety over a
number field by the sum of its injectivity diameter and the norm of its bad reduction
primes. It leads to an unconditional explicit upper bound on the rank of Mordell-Weil
groups. Assuming the height conjecture of Lang and Silverman, we then obtain a
Northcott property for the regulator on the set of polarized simple abelian varieties
defined over a fixed number field K , of dimension g and rank mK bounded from above
and with dense K -rational points. We remove the simplicity assumption in the principally
polarized case by giving a refined version of the Lang-Silverman conjecture.

Keywords. Heights, abelian varieties, regulators, Mordell-Weil.

Subject Classification: 11F11, 11F66

Hauteurs, rangs et régulateurs des variétés abéliennes.

Résumé. On minore la hauteur de Faltings d’une variété abélienne sur un corps de
nombres par la somme de son diamètre d’injectivité et de la norme de ses premiers
de mauvaise réduction. Cela entraîne une majoration explicite inconditionnelle du rang
des groupes de Mordell-Weil. On obtient alors comme conséquence d’une conjecture
de Lang et Silverman une propriété de Northcott pour le régulateur sur l’ensemble des
variétés abéliennes simples, polarisées et définies sur un corps de nombres, à dimension
et rang bornés et dont les points rationnels sont denses. On montre comment se passer de
l’hypothèse de simplicité dans le cas de polarisation principale en proposant une version
raffinée de la conjecture de Lang-Silverman.

Mots-Clefs: Hauteurs, variétés abéliennes, régulateurs, Mordell-Weil.

1. Introduction

Let K be a number field of degree d over Q and let MK stand for the set of all places
of K . We denote by M∞K the set of archimedean places. For any place v ∈ MK ,
we denote by Kv the completion of K with respect to the valuation |.|v . One fixes
|p|v = p−1 as a normalization for any finite place v above a rational prime p. The
local degree will be denoted by dv = [Kv : Qv ].

Let A be an abelian variety of dimension g defined over the number field K . The set
of rational points of A over K is finitely generated by the Mordell-Weil Theorem, and
∗Many thanks to Pascal Autissier, Marc Hindry, Robin de Jong, Qing Liu, Gaël Rémond and Martin Widmer for
exchanging ideas concerning this article. The author is supported by the DNRF Niels Bohr Professorship of Lars
Hesselholt, ANR-14-CE25-0015 Gardio and ANR-17-CE40-0012 Flair.
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the aim of this article is to study links between the rank of the Mordell-Weil group, the
regulator of the Mordell-Weil lattice and the Faltings height of the abelian variety A.

We first give an inequality between the Faltings height hF+(A/K ) of Definition 2.2
and the norm of the bad reduction primes of A, interesting in itself and useful for the
following results.

Theorem 1.1. Let g ≥ 1 be an integer. Let K be a number field of degree d. There
exist two quantities c = c(g) > 0, c0 = c0(g) ∈ R, such that for any abelian variety
A of dimension g, defined over K , one has

hF+(A/K ) ≥ c
1

d
log N0

A/K + c0

where N0
A/K is the product of the norms of the primes of K of bad reduction for A.

The explicit values c = (12g)−12g12g4g

and c0 = −1/c are valid.

We believe this inequality will be useful in different contexts. We believe
furthermore that some steps in the proof presented here could be useful as well
(explicit Bertini, reduction to the jacobian case by quotient with explicit bounds on
their heights, etc). See Proposition 3.2 for a detailed description of the argument.
A similar statement (for the semi-stable case) was obtained in [HiPa16] independently.
They show the result in details over function fields and with different arguments. The
main difference is the fact that the quantities c and c0 here don’t depend on the base
field K , but only on the dimension g. Their strategy of proof seems to work over
number fields as well, based on rigid uniformization of abelian varieties. Remark
that their lower bound (at least in the case of function fields) is given in terms of
Tamagawa numbers. To obtain Tamagawa numbers with our strategy would require
a better understanding of the variation of component groups of Néron models within
isogeny classes of abelian varieties. Another difference is that the quantities c and c0

here are given explicitly, and are not too extreme in the case of jacobian varieties,
where c = 1/124g2+1 and c0 = 0, see Proposition 3.2 and Proposition 3.6 below.
Unfortunately, it is unlikely that the explicit expressions we obtain could be improved
in a significant way using the strategy we follow here. The main reason is the use of
Theorem 1.3 page 760 of [Rém10] where one already has a tower with three levels of
exponents, plus the fact that the control given in [CaTa12] on the genus of the curve
constructed by the Bertini argument is (more than) exponential: the combination of
these inequalities is forcing our c and our c0 to behave like a four levels exponential
function in the dimension of A, and the aforementioned results both seem difficult to
improve on.

Whenever a polarization is given on A, one can obtain a richer lower bound. Let
(A, L) be a polarized abelian variety of dimension g defined over the number field K .
We give an inequality between the Faltings height hF+(A/K ) of Definition 2.2,
the norm of the bad reduction primes of A over K and the injectivity diameter of
(A(C), L). As a direct corollary of Theorem 1.1 and of the Matrix Lemma (see
Theorem 3.1 below) we obtain:
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Corollary 1.2. Let g ≥ 1 be an integer. Let K be a number field of degree d. There
exist three explicit quantities c1 = c1(g) > 0, c2 = c2(g) > 0, c3 = c3(g) ∈ R,
such that for any abelian variety A of dimension g, defined over K , for any ample line
bundle L carrying a polarization on A, one has

hF+(A/K ) ≥ c1
1

d
log N0

A/K + c2
1

d

∑

v∈M∞K

dvρ(Av , Lv)
−2 + c3

where N0
A/K is the product of the norms of the primes of K of bad reduction for A and

ρ(Av , Lv) is the injectivity diameter of Av (C) polarized by Lv . The explicit values

c1 = (12g)−12g12g4g

/17, c2 = 1/17 and c3 = −1/c1 are valid.

Note that the polarization is not required to be principal here. As for Theorem 1.1,
the explicit values given here are not expected to be optimal. Nevertheless in the case
where A is the semi-stable jacobian of a curve, one can take c1 = 1/204, c2 = 1/17
and c3 = −39g/17.

One obtains the following result as another corollary of Theorem 1.1 and
preexisting bounds on the Mordell-Weil rank.

Corollary 1.3. Let A be an abelian variety of dimension g defined over a number field
K of degree d and discriminant�K . Let mK be the Mordell-Weil rank of A(K ). There
exists a quantity c4 = c4(d, g) > 0 such that

mK ≤ c4 max{1, hF+(A/K ), log |�K |},

and the explicit value c4 = (12g)12g12g4g

d3 is valid.

Let us add another remark, namely if A = JC is the jacobian of a curve C of
genus g ≥ 2 (not necessarily semi-stable) over a number field K of degree d and
discriminant �K , one has the explicit

mK ≤ 48g3d328g2
124g2

max{1, hF+(JC/K )} + gd28g2
log |�K | + g3d328g2

log 16,

as given in the proof of Corollary 1.3. The case of elliptic curves is given in Lemma 4.7
of [Paz14]. Corollary 1.3 will be used in the proof of Lemma 5.3. 1

We then focus on the regulator of A(K ). We show that it satisfies a Northcott
property for simple abelian varieties under a conjecture of Lang and Silverman, as
proposed in [Paz16a].2

Theorem 1.4. Assume the Lang-Silverman Conjecture 4.1. The set of Q-isomorphism
classes of simple abelian varieties A, equipped with an ample and symmetric line
bundle L, defined over a fixed number field K , of dimension g and rank mK bounded
from above, with A(K ) Zariski dense in A and with RegL(A/K ) bounded from above
is finite.

1The reader will see that Lemma 5.3 is stronger than what is needed for the sequel, but we keep Remark 4.4 in
mind.
2Note that a version of Theorem 1.4 for elliptic curves without the requirement that the rank is bounded from
above is given in [Paz14] with an incorrect proof, see [Paz16b].
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In this special case one restricts to simple abelian varieties where the Zariski
density of A(K ) is equivalent to having positive Mordell-Weil rank. Using a stronger
height conjecture one obtains the following general statement, without any simplicity
assumption, on the moduli space of principally polarized abelian varieties.

Theorem 1.5. Assume the stronger Lang-Silverman Conjecture 5.1. The set of
Q-isomorphism classes of principally polarized abelian varieties A, defined over a
fixed number field K , of dimension g and rank mK bounded from above, with A(K )
Zariski dense in A and regulator bounded from above is finite.

As explained in [Paz16a], if one restricts to g = 1 one can replace the
Lang-Silverman conjecture by the ABC conjecture in the statements of Theorem 1.4
and Theorem 1.5.

We divide the work as follows. In section 2 we give the definitions of the regulator
and of the Faltings height of an abelian variety. In section 3 we prove Theorem 1.1:
it relies on the core of the work, namely Proposition 3.2, which gives the semi-stable
version. The final step is then given in Proposition 3.6. The rest of the work is of a
more prospective nature, but still concerning the arithmetic of Mordell-Weil groups.
In section 4 we use the conjecture of Lang and Silverman to deduce Theorem 1.4.
In section 5 we discuss how a stronger conjecture of Lang and Silverman type imply
Theorem 1.5. We conclude in section 6 with a comparaison with number fields,
extending the dictionary of [Paz14].

2. Definitions

Let S be a set. We will say that a function f : S → R satisfies a Northcott property
on S if for any real number B, the set {P ∈ S | f (P) ≤ B} is finite.

Notation. the function denoted log is the reciprocal of the classical exponential
function, so log e = 1 (we do not use the notation ln). We will denote by OK the
ring of integers of the number field K . If K ′ is a finite extension of a number field K ,
we denote by NK ′/K the relative norm. If p′ is a prime ideal in OK ′ above the prime
ideal p in OK , then ep′/p is the ramification index and fp′/p stands for the residual
degree.

2.1 Regulators of abelian varieties

Let A/K be an abelian variety over a number field K polarized by an ample and
symmetric line bundle L . Let mK be the Mordell-Weil rank of A(K ). Let ĥ A,L be the
Néron-Tate height associated with the pair (A, L). Let 〈., .〉 be the associated bilinear
form, given by

〈P, Q〉 = 1

2

(
ĥ A,L(P + Q)− ĥ A,L(P)− ĥ A,L(Q)

)

for any P, Q ∈ A(Q). This pairing on A × A depends on the choice of L .
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Definition 2.1. Let P1, . . . , PmK be a basis of the lattice A(K )/A(K )tors , where A(K )
is the Mordell-Weil group. The regulator of A/K is defined by

RegL(A/K ) = | det(〈Pi , Pj〉1≤i, j≤mK )|,
where by convention an empty determinant is equal to 1.

As for the height, the regulator of an abelian variety depends on the choice of an
ample and symmetric line bundle L on A.

There is a more intrinsic way of defining a regulator, that doesn’t depend on the
choice of L . Start with the natural pairing on the product of A with its dual abelian
variety Ǎ given by the Poincaré line bundle P: for any P ∈ A(Q) and any Q ∈ Ǎ(Q),
define 〈P, Q〉 = ĥ A× Ǎ,P(P, Q). Next choose a base P1, . . . , PmK of A(K ) modulo

torsion and a base Q1, . . . , QmK of Ǎ(K ) modulo torsion. Then define

Reg(A/K ) = | det(〈Pi , Q j 〉1≤i, j≤mK )|.
Let us recall how these two regulators are linked (see for instance [Hin07]). Let

�L : A→ Ǎ be the isogeny given by �L(P) = t∗P L ⊗ L−1. One has the formula

ĥ A,L (P) = 1

2
〈P, �L(P)〉.

Hence if u is the index of the subgroup �L(ZP1 ⊕ · · · ⊕ ZPmK ) in Ǎ(K ) modulo
torsion, one has

RegL(A/K ) = u2−mK Reg(A/K ). (1)

Let us remark that when L induces a principal polarization, the index u is equal to 1.
Thus Theorem 1.5 is valid with both regulators.

2.2 The Faltings height

Let A be an abelian variety defined over a number field K , of dimension g ≥ 1. Recall
that OK is the ring of integers of K and let π : A −→ Spec(OK ) be the Néron model
of A over Spec(OK ). Let ε : Spec(OK ) −→ A be the zero section of π and let ωA/OK

be the maximal exterior power (the determinant) of the sheaf of relative differentials

ωA/OK := ε�	g
A/OK

 π�	g
A/OK

.

For any archimedean place v of K , let σ be an embedding of K in C associated
to v . The associated line bundle

ωA/OK ,σ = ωA/OK ⊗OK ,σ C  H0(Aσ (C),	
g
Aσ
(C))

is equipped with a natural L2-metric ‖.‖v given by

‖s‖2v =
i g2

(2π)2g

∫

Aσ (C)
s ∧ s .
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The OK -module ωA/OK is of rank 1 and together with the hermitian norms ‖.‖v at
infinity it defines an hermitian line bundle ωA/OK = (ωA/OK , (‖.‖v)v∈M∞K ) over OK .

It has a well defined Arakelov degree d̂eg(ωA/OK ). Recall that for any hermitian line
bundle L over Spec(OK ) the degree of L in the sense of Arakelov is defined as

d̂eg(L) = log # (L/sOK )−
∑

v∈M∞K

dv log ‖s‖v ,

where s is any non zero section of L. The resulting number does not depend on the
choice of s in view of the product formula on the number field K .

The Arakelov degree of this metrized bundle will give a translate of the classical
Faltings height.

Definition 2.2. The height of A/K is defined as

hF+(A/K ) := 1

[K : Q]
d̂eg(ωA/OK ) .

This non-negative real number doesn’t depend on any choice of polarization
on A. When A/K is semi-stable, this height only depends on the Q-isomorphism
class of A. It is just a translate of the classical Faltings height h F (A/K ), we have
hF+(A/K ) = h F (A/K ) + g

2 log(2π2). If A/K is not semi-stable, one may use
Chai’s base change conductor as in the formula (15) in the sequel as a complementary
definition. See [Fa83] Satz 1, page 356 and 357 for its basic properties, and
for a comparison with the theta height in [Paz12] (based on ideas of Bost and
David). We prefer to use this translate because it gives cleaner inequalities (see
the jacobian case in Proposition 3.2 for instance). We recall here four classical
properties: firstly, if A = A1 × A2 is a product of abelian varieties, one has
hF+(A/K ) = hF+(A1/K ) + hF+(A2/K ). Secondly, the dual abelian variety of A
has the same height as A by a result of Raynaud. Thirdly, if K ′/K is a number field
extension, one has hF+(A/K ′) ≤ hF+(A/K ). Finally if A/K is semi-stable, one
defines the stable height by hF+(A/Q) := hF+(A/K ), which is invariant by number
field extension.

At finite places we focus on the bad reduction locus with the following quantity.

Definition 2.3. Let A be an abelian variety over a number field K . Let A →
Spec(OK ) be its Néron model. Let p be a prime of OK . If the special fiber Ap is an
abelian variety, we say that p is a prime of good reduction for A, otherwise the prime
is of bad reduction. We define

N0
A/K =

∏

p⊂OK ,
pbad for A

NK/Q(p).

Regarding archimedean places, let us recall what the injectivity diameter is.

Definition 2.4. Let A be a complex abelian variety. Let L be a polarization on
A. Let TA be the tangent space of A, let �A be its period lattice and HL the
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associated Riemann form on TA. The injectivity diameter is the positive number
ρ(A, L) = min

γ∈�\{0}
√

HL(γ, γ ), i.e. the first minimum in the successive minima of the

period lattice of A.

3. A lower bound for the Faltings height

We start by recalling Masser’s Matrix Lemma in Bost version (later precised by
Autissier and Gaudron-Rémond). We then give a lower bound for the Faltings height
by the norm of the bad reduction primes in the semi-stable case, then we obtain the
result in the general case by base change, hence deriving a proof of Theorem 1.1
and Corollary 1.2. This implies an upper bound on the Mordell-Weil rank of abelian
varieties over number fields in terms of the Faltings height.

3.1 Archimedean places

Let us start by the Matrix Lemma given in Théorème 1.1 page 345 of Gaudron and
Rémond [GaRe14b] (see also Autissier’s [Aut13] for good explicit constants if the
polarization is principal; the first version was given by Bost for principally polarized
abelian varieties, as stated in Autissier’s paper). We give it here with the height
hF+(A/K ) = h F (A/K ) + g

2 log(2π2).

Theorem 3.1 (Matrix Lemma). Let K be a number field such that A is defined
over K , polarized by an ample line bundle L. For any archimedean place v of K ,
denote by ρ(Av , Lv) the injectivity diameter of the complex polarized abelian variety
(Av , Lv), then

1

d

∑

v∈M∞K

dvρ(Av , Lv)
−2 ≤ 16 hF+(A/Q)+ 39g.

The Matrix Lemma is true for the stable height hF+(A/Q), and we always have
hF+(A/K ) ≥ hF+(A/Q). Here the polarization is not necessarily principal.

3.2 Bad reduction places

We compare the height and the size of the bad primes of A over the base field K .
We first give a proof of the inequality in the semi-stable case and then obtain the
general result using base change properties given in the next paragraph. The following
proposition gives the result in the semi-stable case. Let us first recall the case of elliptic
curves, studied in [Paz14], where the argument is direct and produces easy constants.
Let A = E be an elliptic curve. One has the exact formula

hF+(E/K ) = 1

12d

⎡

⎣logNK/Q(�E )−
∑

v∈M∞K

dv log
(
|�(τv)|(2 Im τv)

6
)
⎤

⎦ ,
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where �E is the minimal discriminant of the curve, τv is a period in the fundamental
domain such that E(K v )  C/Z+τvZ and�(τv) = q

∏+∞
n=1(1−qn)24 is the modular

discriminant, with q = exp(2π iτv ). A direct analytic estimate using Im τv ≥
√

3/2
provides us with

hF+(E/K ) ≥ 1

12d
log N0

E/K . (2)

Let’s move on to higher dimension.

Proposition 3.2. Let A/K be a semi-stable abelian variety of dimension g and defined
over a number field K of degree d. Then there exists quantities c5 = c5(g) > 0 and
c6 = c6(g) ∈ R such that

hF+(A/K ) ≥ c5
1

d
log N0

A/K + c6.

The explicit values c5 = (12g)−12g12g3.5g

and c6 = −1/c5 are valid. If A is the
jacobian of a curve of genus g ≥ 1, then one can even take c5 = 1

12 and c6 = 0.

Proof. The proof is divided into six steps: we start by the case of jacobians in Step 1.
Then for general abelian varieties, we reduce to the case of principally polarized
abelian varieties in Step 2 by Zarhin’s trick. We make use of several projective heights
(theta height, height à la Philippon, . . . ) to work on the inequality in Step 3. Then
we explain in Step 4 how to find a curve of small height on a principally polarized
abelian variety (by a Bertini Theorem) with the extra constraint that it is defined
over a finite extension of K with controlled ramification, that will help us reduce the
general case to the first case of jacobians. We show that the abelian variety we started
with is a quotient of the jacobian of this curve (by classical arguments) in Step 5 and
we can finally conclude (via Néron-Ogg-Shafarevich) by putting everything together
in Step 6. As A/K is semi-stable, its Faltings height is invariant by number field
extension, this will be used in the sequel.

Step 1. We start by proving the result for jacobians of curves. If A = JC is the
jacobian of a curve C , the argument may be presented as follows. By the arithmetic
Noether’s formula of [MB89] Théorème 2.5 page 496 one has for a curve C of genus
g ≥ 1 (with semi-stable jacobian JC) over a number field K of degree d ,

12d hF+(JC/K ) = (ωC · ωC)+
∑

pprime
p⊂OK

δp(C) logNK/Q(p)

+
∑

σ :K ↪→C

δ(Cσ )+ dg log(22π8),

where the auto-intersection (ωC · ωC) is non-negative, δ(Cσ ) is the delta invariant of
Faltings of the complex curve Cσ and δp(C) is the number of singular points in the
fiber Cp. It is zero if and only if p is a prime ideal in OK of good reduction for C .
A remark is that the quantity

1

d

∑

pprime

δp(C) logNK/Q(p) (3)
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is invariant by number field extension of the base field K . Indeed, if one proceeds
with a base change from OK to OK ′ , each double point in the fiber over a prime p of
C/K becomes singular in the fiber over primes p′|p of C/K ′ with thickness equal to
the ramification index ep′/p, so the number of double points gets multiplied by ep′/p
by passing from p to p′, see the proof of Lemma 1.12 in [DeMu69].

One has (ωC · ωC) ≥ 0 and δ(Cσ ) ≥ −2g log 2π4 by [Wil17], hence

(ωC · ωC)+
∑

σ :K ↪→C

δ(Cσ ) ≥ d · c7(g)

where one can take c7(g) = −2g log 2π4. (Note that using the second inequality of
Proposition 2.4.8 page 102 of [Java14] we would get (ωC · ωC)+∑

σ :K ↪→C δ(Cσ ) ≥
−4dg2.)

It proves that the height of JC satisfies

hF+(JC/K ) ≥ 1

12d

∑

p prime

δp(C) logNK/Q(p)+ c8(g), (4)

for c8(g) = g log(22π8)−2g log 2π4 = 0. This completes the statement for jacobians,
because any bad prime for JC is also a bad prime for C , so we have δp(C) ≥ 1 for any
bad prime of JC . We now look for a way to reduce to the case of jacobians.

Step 2. We may assume, using Zarhin’s trick, that the abelian variety is principally
polarized. Indeed if Ǎ stands for the dual of A, the abelian variety Z(A) = A4 × Ǎ4

carries a principal polarization, hF+(Z(A)/K ) = 8 hF+(A/K ) and N0
Z(A)/K = N0

A/K .
It will have a little cost on the value of the quantities c5 and c6. Let us now fix a
principal polarization L pri on A.

Step 3. We will use the theory of Mumford theta coordinates as in the article of
[DaPh02] pages 646–652, provided we do a field extension K ′/K that enables us to
choose a Mumford theta structure of level 4. The choice K ′ = K [A[16]] is valid
(and implies that A is semi-stable over K ′), and Lemma 4.7 page 2078 of [GaRe14a]
implies

[K ′ : K ] ≤ 164g2
. (5)

We choose an embedding �16 : A → P16g−1 given by the theta sections of
L = L⊗16

pri , where L pri is the principal polarization and we define the theta height of
(A, L) by h�(A, L) = h(�16(OA)). We will in fact show the lower bound for the
theta height of A: by virtue of the following inequality given in [Paz12]

|h�(A, L)− 1

2
hF+(A/Q)| ≤ 6 · 42g log(42g) log(h�(A, L)+ 2), (6)

it will lead to the lower bound we seek for the Faltings height of A as explained in
Step 6.

By Proposition 3.9 of [DaPh02] page 665, one has for any algebraic subvariety
V ⊂ A the inequality (where N = 16g − 1)

|̂hPN (V )− hPN (V )| ≤ c9(g, dim V , deg V , h�(A, L)),
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where hPN (V ) is the height of the variety V as defined in [DaPh02] page 644,
the height ĥPN (V ) is defined in [Phi91] in Proposition 9 and the quantity c9(g, dim V ,
deg V , h�(A, L)) > 0 can be taken to be (4g+1h�(A, L) + 3g log 2) · (dim V + 1) ·
deg V . Picking V = A, one gets ĥPN (A) = 0, dim A = g, degL A = 16gg! and

hPN (A) ≤ c10(g)(h�(A, L) + 1), (7)

where c10(g) > 0 only depends on the dimension of A, and one can take c10(g) =
43g+1(g!)(g+1). Hence giving a lower bound on the height hPN (A)will imply a lower
bound on the theta height, which in turn will imply a lower bound on the Faltings
height by (6).

By Theorem 1.3 page 760 of [Rém10] and Proposition 1.1 page 760 of [Rém10]
one has that for any curve C in PN of genus g0 and degree deg C there exists a quantity
c11(g0, deg C) > 0 such that

h�(JC, L�) ≤ c11(g0, deg C)(hPN (C)+ 1), (8)

where L� is the polarization associated to the theta divisor on JC . As C is embedded
into its jacobian by a theta embedding, one has deg(C) = g0 and one can even take
c11 = (6g0)

121g08g0 .

Step 4. The next goal is now to find an algebraic curve C on A of genus
g0 ≤ c12(g) such that hPN (C) ≤ c12(g)hPN (A). The proposition is already proved
for g = 1, we may well suppose that g ≥ 2 from now on. We will cut A by g − 1
hyperplanes H1, . . . , Hg−1 in general position of height h(Hi ) ≤ c13(g)hPN (A).
Using Bertini’s Theorem given in Theorem II.8.18 of [Har06] page 179, there exists
a dense open subset U such that for any hyperplane H in U , the intersection A ∩ H
is non-singular and connected. As Q is algebraically closed, one has U (Q) �= ∅,
so there exist hyperplanes H with coordinates in Q and A ∩ H a geometrically
connected non-singular variety in PN . To be able to choose hyperplans Hi with
height h(Hi ) ≤ c13(g)hPN (A), we use the following argument: assume we have an
infinite set SM of algebraic numbers of height less that M , where M ≥ 0 is a fixed
real number. This set can be infinite because we don’t impose an upper bound on
the degree of these algebraic numbers. Consider the infinite set of all lines in the
dual projective space P̌N with coefficients in SM . As U is an open dense subset,
its complement can’t contain all these lines, so there exists infinitely many lines
intersecting U . Pick one of these lines. It provides us with the desired hyperplane Hi

in PN . Repeat the argument g − 1 times to obtain a smooth curve C , geometrically
connected on A, of genus g0. Furthermore, we would like to ensure that the resulting
field extension used to define C will remain as little ramified as possible. The choice
of the set SM is then crucial, we will now take the time to explain how it is done.

Classical existence theorems for infinite unramified extensions of a given number
field often come from the application of the Golod-Shafarevich inequality (see
[GoSha64]). A quadratic field with at least 5 different prime factors generally admits
such an extension. The following result is of a similar spirit. Let
k = Q(

√−643 · 1318279381). By Maire [Mai00], the quadratic field k admits
an infinite everywhere unramified extension k†, which is a tower of unramified
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2-extensions. Recall K ′ = K (A[16]). Let K ′k be the compositum of K ′ and k over
Q and let K ′′∞ = k†K ′k be the compositum of k† and K ′k over k. Then K ′′∞/K ′k
is unramified (classical, see Proposition B.2.4 page 592 of [BoGu07] for instance).
We want to find small algebraic numbers in this infinite extension.

Let F ⊂ k† be a finite extension of k. By applying Minkowski’s convex body
Theorem as in the proof of Theorem B.2.14 page 595 of [BoGu07]3, there exists a
non-zero algebraic number αF in OF generating F over Q (this is important) and with
logarithmic absolute Weil height less than log |�F/Q|1/[F:Q]. Now |�F/Q|1/[F:Q] =
|�k/Q|1/2 because F/k is unramified and [k : Q] = 2, and log |�k/Q|1/2 is bounded
from above by log 106 < 14. Varying F along the tower, we get infinitely many αF

because each αF is primitive in F , hence they are pairwise distincts. We gather all
these αF to define the set SM ⊂ K ′′∞, for M = 14, and thus get a curve C defined over
a finite4 extension K ′′ ⊂ K ′′∞ unramified over K ′k and with c13(g) = 14.

Note that [K ′k : Q] ≤ [k : Q][K ′ : Q] = 2[K ′ : Q], and [K ′k : Q] = [K ′k :
K ′][K ′ : Q], hence

[K ′k : K ′] ≤ 2. (9)

Here is a picture to help the reader follow the construction.

We end by a last field extension to be able to use the theta height of Jac(C), we
pose K � = K ′′(Jac(C)[16]). The jacobian of C is now semi-stable and Lemma 4.7
page 2078 of [GaRe14a] implies

[K � : K ′′] ≤ 164g2
0 . (10)

The control on the height of the intersection defining C and on the degree of the
intersection is provided by Proposition 2.3 page 765 of [Rém10] which gives in our
situation, as deg A = 16gg! and h(Hi ) ≤ c13(g)hPN (A),

hPN (C) ≤ hPN (A ∩ H1 ∩ · · · ∩ Hg−1) ≤ c14(g)(hPN (A)+ 1), (11)

where one can take c14(g) = g(16gg!) + 14. We also need to control the genus
g0 of the curve C . Using calculations on the successive Hilbert polynomials of

3See also [VaWi13] for better bounds in some cases.
4In the end the curve is defined with a finite number of coefficients in SM and K ′.
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A ∩ H1 ∩ · · · ∩ Hi , one can take the explicit bound g0 ≤ 6gg!g2 = c12(g), see
[CaTa12] for the details5.

Step 5. The conjunction of (8), (11), (7) and the fact that g0 ≤ c12(g) imply that over
the finite extension K �/K there exists a curve C on A such that

h�(JC, L�) ≤ c15(g)(h�(A, L)+ 1) (12)

where one can take c15(g) = (12g)12g12g2g

, and by the last section of [CaTa12] we
have a closed immersion A→ JC . By the Poincaré Reducibility Theorem, this implies
that there exists an abelian variety B such that JC is isogenous to A × B. Isogenous
abelian varieties share the same bad reduction primes by the Néron-Ogg-Shafarevich
criterion, because they have the same Tate modules (see Theorem 1 page 493 of
[SeTa68] and Corollary 2 page 22 of [Fa86]). Thus, if we denote d� = [K � : Q],
we get that

1

d�
∑

p� bad for A

δp�(C) logNK �/Q(p
�) ≤ 1

d�
∑

p� ⊂ OK�
δp�(C) logNK �/Q(p

�). (13)

Step 6. Let us show that we have reduced the proof to the case of jacobians of curves.
Following the previous steps we get

1

d�
∑

p� ⊂ OK�
δp�(C) logNK �/Q(p) ≤

(i)
hF+(JC/K �)�

(ii)
h�(JC, L�)

�
(iii)

h�(A, L) �
(iv)

hF+(A/K �),

where the implied constants (multiplicative and additive) depend only on g and the
successive inequalities are

• (i) is the case of curves given by inequality (4),
• (ii) is the comparison between the theta height and the Faltings height of [Paz12]

as recalled in (6),
• (iii) is inequality (12),
• (iv) is again (6).

If the curve C was defined over K , we could use on the far left side the invariance
property (3). In the general case we have nevertheless inequality (13), and we get from
there

1

d�
∑

p�⊂OK�
bad for A

δp�(C) logNK �/Q(p
�) ≥ 1

d

∑

p⊂OK
bad for A

(∑

p�|p

fp�/p
[K � : K ]

)
logNK/Q(p) (14)

5Let us also remark that one can embed the curve in P3, then using a theorem of Castelnuovo for curves in P3

given in Theorem 6.4 page 351 of [Har06], one has g0 ≤ deg
P3 (C)2.
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where fp�/p is the residual degree. Indeed, if p� is a bad prime for A, it is also a bad
prime for Jac(C), hence also a bad prime for C (the converse statement is wrong),
hence δp�(C) ≥ 1. Using

[K � : K ] =
∑

p�|p
ep�/p fp�/p ≤

(
max
p�|p

ep�/p
) ∑

p�|p
fp�/p,

one gets in (14)

1

d�
∑

p� bad for A

δp�(C) logNK �/Q(p
�) ≥ 1

d

∑

pbad for A

1

max
p�|p

ep�/p
logNK/Q(p)

and
1

d

∑

pbad for A

1

max
p�|p

ep�/p
logNK/Q(p) ≥ 1

2 · 164(g2+g2
0 )d

log N0
A/K

where this last inequality holds because the ramification index is controlled by

ep�/p ≤ [K � : K ′′][K ′′ : K ′k][K ′k : K ′][K ′ : K ] ≤ 2 · 164g2 · 164g2
0

as K ′′/K ′k is unramified and as one has (5), (9) and (10).
One concludes by hF+(A/K �) = hF+(A/K ) on the far right side because A/K is

already semi-stable. At each and every step an explicit constant is provided, an easy

calculation leads to c5 = (12g)−12g12g3.5g

and c6 = −1/c5 for the general case. �

3.3 Reducing to the semi-stable case

We explain in this section how to use base change properties to derive the general case
from the semi-stable case. Let us start by the following definition.

Definition 3.3. Let A be an abelian variety defined over a discrete valuation field
Kp and let K ′p′ be a finite extension of Kp where A has semi-stable reduction, with
ramification index ep′/p, where p′ is a prime above p, and ωA/Kp the determinant of
differentials. Let hp : AOKp

×OKp
OK ′

p′
→ AOK ′

p′
be the canonical base change

morphism. Let Lie(hp) be the induced injective morphism on differentials. Let

c(A, p, p′) = 1

ep′/p
lengthOK ′

p′
coker(Lie(hp))

be the base change conductor, where if �(., .) stands for global sections one has

coker(Lie(hp)) =
�(Spec(OKp ), ωA/Kp )⊗OK ′

p′

�(Spec(OK ′
p′
), ωA/K ′

p′
)

.

This conductor was defined by Chai in [Cha00], see also the reference [HaNi12]
pages 90–98. It satisfies in particular the two following key properties.
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Proposition 3.4. Let A be an abelian variety defined over a discrete valuation field
Kp and let K ′p′ be a finite extension of Kp where A has semi-stable reduction with
base change conductor c(A, p, p′). Then one has

(1) c(A, p, p′) = 0 if and only if A/Kp has semi-stable reduction,
(2) if A is not semi-stable at p, then c(A, p, p′) ≥ 1/ep′/p.

Proof. The proof goes along the same lines as Proposition 4.3 of [Paz14] which deals
with elliptic curves. As it is relatively short, we give it here for abelian varieties. Let us
start by assuming that A/Kp has semi-stable reduction. Denote by A0

OKp
the identity

component of the Néron model of A over Kp, one then has A0
OKp
⊗OK ′

p′
 A0

OK ′
p′

by Corollaire 3.3 page 348 of SGA 7.1 [SGA72], hence the differentials are the same,
so c(A, p, p′) = 0.

Reciprocally, one still has a map � : A0
OKp
⊗OK ′

p′
→ A0

OK ′
p′

. As c(A, p, p′) = 0,

the Lie algebras are the same and as � is an isomorphism on the generic fibers, � is
birational. On the special fiber, � has finite kernel and is thus surjective because the
dimensions are equal, here again because c(A, p, p′) = 0.

We have that � is quasi-finite and birational. As AOK ′
p′

is normal, by Zariski’s

Main Theorem found in Corollary 4.6 page 152 of [Liu02] for instance, � is an open
immersion. So � is surjective and is also an open immersion, hence an isomorphism.
This implies that A/Kp is semi-abelian, and proves part (1). Part (2) is easier, if A
is not semi-stable then the length in the definition of c(A, p, p′) is a positive integer,
hence bigger than 1. �

We need a lemma.

Lemma 3.5. Let Uns denote the set of unstable primes of A over K . Let K ′ be a
number field extension of K over which A has semi-stable reduction everywhere. Then
one has

hF+(A/K ) − hF+(A/K ′) ≥ 1

[K ′ : Q]

∑

p∈Uns

logNK/Q(p). (15)

Proof. For a field F , we denote by AOF the Néron model of A over the base SpecOF .
As K ′ is a finite extension of K , we have

hF+(A/K ) − hF+(A/K ′) = 1

[K : Q]
deg(ωAOK

)− 1

[K ′ : Q]
deg(ωAOK ′ ), (16)

i.e. the archimedean parts cancel out. Let φ : K → K ′ be the inclusion, we have
a morphism ωAOK ′ → φ∗ωAOK

, taking degrees (see also the proof of Lemme 1.23
page 35 of [Del85]) one obtains

[K ′ : K ] deg(ωAOK
) = deg(φ∗ωAOK

),

and

deg(φ∗ωAOK
) = deg(ωAOK ′ )+

∑

p⊂OK

∑

p′|p
lengthOK ′

p′
(cokerφ) logNK ′/Q(p

′),
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hence using Proposition 3.4 we obtain

[K ′ : K ] deg(ωAOK
) ≥ deg(ωAOK ′ )+

∑

p∈Uns

∑

p′|p

[K ′ : K ]

ep′/p
logNK/Q(p),

hence dividing by [K ′ : Q] = [K ′ : K ][K : Q], and using ep′/p ≤ [K ′ : K ]

1

[K : Q]
deg(ωAOK

) ≥ 1

[K ′ : Q]
deg(ωAOK ′ )+

1

[K ′ : Q]

∑

p∈Uns

logNK/Q(p),

which gives the result by using (16). �

We are now ready to perform a base change on the inequality of Proposition 3.2,
which will be the completion of the proof of Theorem 1.1.

Proposition 3.6 (Final step in the proof of Theorem 1.1). Let g ≥ 1 be an integer
and K a number field of degree d. There exists c16(g) > 0 and c17(g) ∈ R such that
for any abelian variety (not necessarily semi-stable) A defined over K , with dimension
g, one has

hF+(A/K ) ≥ c16
1

d
log N0

A/K + c17,

and one can take c16 = c5/124g2
and c17 = c6. If A is the jacobian of a curve, one

can take c16 = 1/124g2+1 and c17 = 0.

Proof. Let Nst
A/K be the product of the norms of primes where A has semi-stable bad

reduction. Let Nuns
A/K be the product of the norms of primes where A has unstable

bad reduction. By definition one has N0
A/K = Nst

A/K Nuns
A/K . Let K ′ be a number field

extension of K such that A acquires semi-stable reduction everywhere over K ′. Using
equality (15), one gets

hF+(A/K ) ≥ hF+(A/K ′)+ 1

[K ′ : Q]
log Nuns

A/K .

As A/K ′ has semi-stable reduction everywhere, one obtains by Proposition 3.2 that

hF+(A/K ′) ≥ c5(g)
1

d ′
log Nst

A/K ′ + c6(g).

Recall (use Theorem 6.2 page 413 of [SiZa95]) that one may choose the explicit
extension K ′ = K [A[12]], hence the degree d ′ = [K ′ : Q] is controlled by the degree
d = [K : Q] and by the dimension of A; for instance, apply Lemma 4.7 page 2078 of
[GaRe14a] to obtain d ′ = [K [A[12]] : K ] ≤ 124g2

. Now one has (with sums taken
over semi-stable bad primes of A)

1

d ′
log Nst

A/K ′ =
1

d ′
∑

p′⊂OK ′
logNK ′/Q(p

′)

≥ 1

d

∑

p⊂OK

1

max
p′|p

ep′/p
logNK/Q(p) ≥ 1

124g2 d
log Nst

A/K
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because ep′/p ≤ [K ′ : K ] and so gathering the estimates we obtain

hF+(A/K ) ≥ c18
1

d
log Nst

A/K+c19
1

d
log Nuns

A/K+c17 ≥ min{c18, c19} 1
d

log N0
A/K+c17,

where the quantities c17, c18, c19 only depend on g. �

Note that for g = 1, Proposition 3.6 is an improvement on Proposition 4.4 page 57
of [Paz14], both in the result and in the presentation: an equality of prime norms is
incorrect in loc. cit. because of possible ramification of stable primes of K ′/K , but
the proof fortunately led to a weaker inequality in the end, so the result stated in loc.
cit. still holds, and anyhow the new result given here is better.

We obtain an easy proof of Corollary 1.2 as the sum of Theorem 3.1 and Proposition
3.6. Apply Proposition 3.6 to get hF+(A/K ) ≥ c16 log N0

A/K + c17 and Theorem 3.1
to get

16 hF+(A/K ) ≥ 16 hF+(A/Q) ≥ 1

d

∑

v∈M∞K

dvρ(Av , Lv)
−2 − 39g,

then sum these two inequalities.
We can now derive Corollary 1.3.

Proof of Corollary 1.3. We will use as a pivot the quantity N0
A/K . Applying

Theorem 5.1 of [Rém10] page 775, there exists quantities c20 = c20(K , g) > 0 and
c21 = c21(K , g) ≥ 0 such that mK ≤ c20(K , g) log N0

A/K + c21(K , g). The quantities
depend on the degree and the discriminant of the base field here. This last inequality
doesn’t require semi-stability of A. Applying Proposition 3.6 of the present text one
obtains log N0

A/K ≤ c22(K , g)max{hF+(A/K ), 1}, also valid in general. Use the
explicit quantities (valid in general) of Theorem 5.1 of [Rém10] page 775, it leads
to mK ≤ 4g3d228g2

log N0
A/K + gd28g2

(log |�K | + g2d2 log 16), and combine
with Proposition 3.6. It proves the corollary. In the case of jacobians combine with
Proposition 3.2 which gives hF+(JC/K ) ≥ 1

12d log N0
JC/K in the semi-stable case

and Proposition 3.6 which gives hF+(JC/K ) ≥ 1
12d124g2 log N0

JC/K for the general
case. �

4. Lang-Silverman conjecture and regulators

We give here a conjecture of Lang and Silverman ([Si84b] page 3966 or [Paz12]7).
Throughout this section, we will use the notation End(A) · P = A to say that the set
End(A) · P is Zariski dense in A.

6This first version of the conjecture is known to be wrong, consider for instance the point (P, 0) on a variety
A1×A2 where P is non-torsion and let the height of A2 tend to infinity. However the philosophy of the conjecture
is clearly the same as the original statement, a generic point can’t have too small height.
7This stronger version is also known to be wrong, see Remark 4.2 and section 5 of the present article for a
clarification.
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Conjecture 4.1 (Lang-Silverman). Let g ≥ 1 be an integer. For any number field K ,
there exists a positive quantity c23 = c23(K , g) such that for any abelian variety A/K
of dimension g and any ample symmetric line bundle L on A, for any point P ∈ A(K ),
one has:

(
End(A)·P = A

)
⇒

(
ĥ A,L(P) ≥ c23 max

{
hF+(A/K ), 1

})
,

where ĥ A,L(.) is the Néron-Tate height associated to the line bundle L and hF+(A/K )
is the (relative) Faltings height of the abelian variety A/K .

Remark 4.2. We only require the condition End(A) · P Zariski dense, not necessarily
Z · P Zariski dense. Let us consider the following situation: let A1 be a simple abelian
variety over K and let A = A1 × A1. Choose P = ([n]P1, P1) ∈ A(K ). If P1

is non-torsion, then Z · P is a strict abelian subvariety (of degree growing with n),
whereas End(A) · P = A. As one has ĥ A,L(P) = (n2 + 1)̂h A1,L1(P1) for the product
polarization L , and as hF+(A/K ) = 2 hF+(A1/K ), the point P satisfies the expected
lower bound if the point P1 does.

Proposition 4.3. Assume the Lang-Silverman Conjecture 4.1. Let K be a number field
and g,m ≥ 1 be integers. There exists a quantity c24 = c24(K , g,m) > 0 such that
for any simple abelian variety A defined over K of dimension g, of rank m over K ,
polarized by an ample and symmetric line bundle L,

RegL(A/K ) ≥
(

c24 max{hF+(A/K ), 1}
)m
.

Proof. Let us denote h = max{hF+(A/K ), 1} and for any i ∈ {1, . . . ,m}, the
Minkowski i th-minimum λi = λi (A(K )/A(K )tors). Apply Minkowski’s successive
minima inequality to the Mordell-Weil lattice,

λ1 · · · λm ≤ mm/2(RegL(A/K ))1/2.

Now, as A is simple, any non-torsion point satisfies End(A) · P = A, so using m times
the inequality of Conjecture 4.1 one gets

RegL(A/K ) ≥ cm
23hm

mm
, (17)

which gives the result. �

We thus obtain Theorem 1.5 as a corollary of Proposition 4.3. Indeed if the rank
is non zero, as soon as the regulator, the rank and the dimension are bounded from
above, the height will be bounded from above, hence the claimed finiteness. This
may be expressed in other words by: the Lang-Silverman conjecture implies that the
regulator RegL(A/K ) satisfies a Northcott property on the set of polarized simple
abelian varieties (modulo isomorphisms) of dimension g defined over a fixed number
field K with A(K ) Zariski dense and Mordell-Weil rank bounded from above.

Remark 4.4. Back to inequality (17), in view of Corollary 1.3, we have h � m. Any
improvement of the form h � m1+ε (for a fixed ε > 0) would lead to a stronger
Northcott property, without assuming that the rank is bounded from above. See also
the addendum [Paz16b].
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5. A stronger lower bound conjecture

We would like to refine the conjecture8 of Lang and Silverman to take care of the
exceptional points in Conjecture 4.1: what can be said about the points P satisfying
End(A) · P � A?

Conjecture 5.1 (Lang-Silverman, new strong version). Let g ≥ 1 be an integer.
For any number field K , there exists two positive quantities c33 = c33(K , g) and
c34 = c34(K , g) such that for any abelian variety A/K of dimension g and any ample
symmetric line bundle L on A, for any point P ∈ A(K ), one has:

• either there exists an abelian subvariety B ⊂ A, B �= A, of degree degL(B) ≤
c34 degL(A) and such that the order of the point P modulo B is bounded from above
by c34,
• or one has End(A)·P is Zariski dense and

ĥ A,L(P) ≥ c33 max
{

hF+(A/K ), 1
}
,

where ĥ A,L(.) is the Néron-Tate height associated to the line bundle L and
hF+(A/K ) is the (relative) Faltings height of the abelian variety A/K .

This is a strong statement. It implies the strong torsion conjecture for example.
Indeed, any torsion point P ∈ A(K )tors falls into the first case because its canonical
height is zero. Hence the order of P is bounded from above solely in terms of K and g
and of the cardinality of the torsion subgroup of a strict abelian subvariety B. An easy
induction on the dimension of A gives a bound on the order of P solely in terms of
K and g, hence on the exponent of the torsion group as well, hence on the cardinal of
the torsion group A(K )tors as well.

This strong form of the conjecture is motivated by Théorème 1.4 page 511 of
[Da93] and Théorèmes 1.8 and 1.13 of [Paz13]. Remark that in both of these works,
the abelian varieties considered are principally polarized, hence the dependance in the
degree of A is only through the dimension g.

Let us see now how this statement can help in understanding the link between the
Mordell-Weil group A(K ) and the abelian subvarieties of A. The following quantity
will play a key role in this paragraph.

Definition 5.2. Let A be an abelian variety over a number field K . Let mK denote the
Mordell-Weil rank of A(K ). Define

m0 = sup{rank(B(K )) | B strict abelian subvariety of A}.
We will call the relative quantity m K −m0 the Zariski rank of the Mordell-Weil group
A(K ).

8Such an attempt has been proposed in Conjecture 1.8 of [Paz12], but it unfortunately fails because of situations
similar to the one described in Remark 4.2 where certain points fall in the first case but should fall in the second
instead. This was communicated to the author by the referee of another project, may he be warmly thanked here.
We fix the problem by changing the condition given there as Z · P = A by the weaker End(A) · P = A. We also
add a dependance in degL (A) in the attempt to control the degree of B thanks to a remark of Gaël Rémond.
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Note that mK−m0 > 0 is equivalent to A(K ) being Zariski dense in A. This Zariski
rank could be compared with the following quantity for a number field K . If rK is the
rank of units in K , let r0 denote the maximal rank of units in a strict subfield of K .
As already noticed in [Paz14] in the easier case of elliptic curves, the Zariski rank
mK − m0 plays the same role (at least when one gives lower bounds on the regulator
in both contexts) as the relative rank of units rK − r0 for number fields.

The next lemma studies the size of the successive minima of the Mordell-Weil
lattice modulo torsion, where the square of the norm is implicitly given by the
Néron-Tate height. We believe this version could lead in the future to some
improvements in Theorem 1.5.

Lemma 5.3. Assume Conjecture 5.1. Let (A, L) be a polarized abelian variety of
dimension g defined over a number field K . For any i ∈ {1, . . . ,mK }, let λi be
the i-th successive minima of the lattice A(K )/A(K )tors . Then there is a quantity
c35 = c35(K , g, degL(A)) > 0 such that

⎧
⎨

⎩

for any i, λ2
i ≥ c35 i,

if i > m0, λ2
i ≥ c35 max{1, hF+(A/K )}.

Proof. Within the proof, we will use the symbol c∗ for a positive quantity only
depending on g, on K and on degL(A). We allow the value of this quantity c∗ to vary
at some steps within the proof, as long as it depends only on g, on K and on degL(A)
and stays positive. If c34(K , g) denotes the quantity appearing in Conjecture 5.1,
denote by c34 = max{1, max

1≤i≤g
c34(K , i)}, the field K being fixed.

Let B denote the set of all abelian subvarieties B in A of degree bounded from
above by c34

g degL(A): it contains the subvarieties appearing in the first case of
Conjecture 5.1, and we raise c34 to the power g to be able to use an induction on the
dimension g towards the end. This is a finite set with cardinal bounded from above by
a quantity depending only on g, on K (because c34 only depends on g and K ) and on
degL(A). The reader interested in an explicit upper bound for the cardinal of this set
can refer to Proposition 4.1 page 529 of [Rém00].

Choose an integer i ∈ {1, . . . ,mK } and define

Zi =
⋃

B∈B
rank(B(K ))<i

B(K ).

The set A(K )\Zi is non-empty, because the rank of the lattices in the finite union
is always strictly smaller than mK . Let Pi be a non-torsion point of minimal height
lying in A(K )\Zi . Apply the “Lemme d’évitement” of Gaudron-Rémond given in
Théorème 1.1 page 125 of [GaRe12] to obtain ĥ A,L(Pi) ≤ Mλi (A(K ))2, where M is
positive and bounds from above the cardinality of B, which can be chosen depending
only on g, on K and on degL(A) in view of Conjecture 5.1.

On the one hand if End(A) · Pi is dense in A, by Conjecture 5.1 one has ĥ A,L(Pi ) ≥
c∗max{1, hF+(A/K )}. We add that max{1, hF+(A/K )} ≥ c∗mK by applying the
Corollary 1.3, and mK ≥ i by definition.
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On the other hand if End(A) · Pi is not dense in A, by Conjecture 5.1 there exists
an abelian variety B ∈ B such that the order of Pi is less than c34 modulo B,
then by definition of m0 one has rank(B(K )) ≤ m0 and by choice of Pi one has
rank(B(K )) ≥ i , hence m0 ≥ i .

Apply Conjecture 5.1 to Pi ∈ B(K ) (modulo torsion in A). If End(B) · Pi is dense
in B one obtains

ĥ A,L(Pi) = ĥ B,L(Pi ) ≥ c∗max{1, hF+(B/K )},
then again using Corollary 1.3 one gets ĥ A,L(Pi) ≥ c∗rank(B(K )) ≥ c∗i .
If End(B) · Pi is not dense in B, we are reduced to the case of a strict abelian
subvariety of A. There exists an abelian subvariety B1 ⊂ B of degree bounded
from above by c34 degL(B) such that Pi has order bounded from above by c34

modulo B1. As degL(B) ≤ c34 degL(A), one has degL(B1) ≤ c34
2 degL(A),

hence degL(B1) ≤ c34
g degL(A) so B1 ∈ B. As Pi avoids Zi one has again

rank(B1(K )) ≥ i . If End(B1) · Pi is dense in B1, then

ĥ A,L(Pi) ≥ c∗max{1, hF+(B1/K )} ≥ c∗rank(B1(K )) ≥ c∗i.

If End(B1) · Pi is not dense in B1, one continues by induction until one reaches a strict
abelian subvariety Bn such than End(Bn) · Pi is dense in Bn, which will eventually be
the case when Bn is simple for instance. It gives the lemma. �

Proposition 5.4. Assume Conjecture 5.1. Let K be a number field, let g ≥ 1 be an
integer, let m ≥ 0 be an integer. There exists a quantity c36 = c36(K , g,m) > 0 such
that for any principally polarized abelian variety A defined over K of dimension g,
equipped with an ample and symmetric line bundle L, with A(K ) of rank m,

RegL(A/K ) ≥
(

c36 max{hF+(A/K ), 1}
)m−m0

.

Proof. Let us denote h = max{hF+(A/K ), 1} and m = rank(A(K )), and for any
i ∈ {1, . . . ,m}, λi = λi (A(K )/A(K )tors).

The inequality is trivial for m = 0. From now on, let us assume m �= 0. Apply
Minkowski’s successive minima inequality to the Mordell-Weil lattice,

λ2
1 · · · λ2

m ≤ mmRegL(A/K ).

Now apply lemma 5.3 with degL(A) = g! to get

RegL(A/K ) ≥ cm−m0
35 hm−m0λ2

1 · · · λ2
m0

mm
, (18)

If m0 = 0, the inequality is the one claimed. Let us suppose that m0 �= 0. Apply again
Lemma 5.3 to get

RegL(A/K ) ≥ m−m(c35)
m0 (m0!) (c35h)m−m0 . (19)

Hence the claimed inequality, as 1 ≤ m0 ≤ m. �
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Theorem 1.5 follows directly from Proposition 5.4, because the set of principally
polarized abelian varieties defined over a fixed number field K , of fixed dimension
g such that A(K ) is Zariski dense in A and with regulator and rank bounded from
above is also a set of bounded height under Conjecture 5.1. Note that in view of (1),
one can replace RegL(A/K ) by Reg(A/K ) in Theorem 1.5 because the polarization
is principal.

6. Conclusion

We generalize here the last section of [Paz14] to abelian varieties, extending the
dictionary given in [Hin07] as well.

Number fieldK Abelian varietyA/K

zeta function ζK (s) ↔ L(A, s) L function
log of discriminant log |DK | ↔ hF+(A) Faltings height
regulator RK ↔ Reg(A/K ) regulator
class number hK ↔ |X(A/K )| Tate-Shafarevitch group
torsion (UK )tors ↔ (A × Ǎ)(K )tors torsion of A and dual Ǎ
degree d ↔ g dimension
max sub rank of units r0 ↔ m0 max rank of ab. subvar.
relative unit ranks rK − r0 ↔ mK − m0 Zariski rank of A(K )
CM field rK = r0 ↔ mK = m0 A(K ) non Z. dense
non-CM field rK > r0 ↔ mK > m0 A(K ) Zariski dense

Remark 6.5. One could prefer to put in link the property “A(K ) Zariski dense in A”
with “K generated by units”. Let us remark that A(K ) Zariski dense is equivalent
to mK > m0, but on the number field side there exists some CM fields K that are
generated by units, so K generated by units is not equivalent to rK > r0. However,
regarding the finiteness property obtained from giving an upper bound for the
regulator, one may replace the property of being non-CM by the property of being
generated by units because there are only finitely many CM fields generated by units
with regulator bounded from above. This property of generation, rather than being
non-CM, could be seen as a better match to the density property of A(K ) on the
abelian side.
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Abstract. In this note, we continue our study of generalized quantum modular forms
initiated in [4, 5]. We construct further examples of depth two quantum modular forms
generalizing several results in [4]. In a special case (corresponding to p = 2) we present
a more detailed analysis. In particular, a rank two higher depth quantum modular form
for the full modular group is constructed.
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1. Introduction and statement of results

For p ∈ N, define the following sl3 false theta function

F(q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3

(
m2

1+m2
2+m1m2

)−m1−m2+ 1
p
(
1− qm1

)(
1− qm2

)(
1−qm1+m2

)
.

This function was introduced in [3] as the numerator of the character of a certain
W -algebra associated to sl3. A more direct connection between the series and Lie
theory can be readily seen from its coefficient min(m1,m2) – the value of Kostant’s
partition function of sl3.

In [4] we decomposed F as

F(q) = 2

p
F1

(
q p)+ 2F2

(
q p) , (1.1)

where F1 and F2 are generalizations of quantum modular forms. Roughly speaking
Zagier [12] defined quantum modular forms to be function f : Q → C (Q ⊂ Q)
such that the “obstruction to modularity”

f (τ )− (cτ + d)−k f (Mτ ) M =
(

a b
c d

)

∈ SL2(Z)

133
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is “nice”. One can show quantum modular properties of the Fj by using two-dimensional
Eichler integrals. For instance, as τ → h

k ∈ Q, F1 agrees with an integral of the shape
(q := e2π iτ )

∫ i∞

−τ

∫ i∞

w1

f (w)√−i(w1 + τ )√−i(w2 + τ )dw2dw1,

where f ∈ S 3
2
(χ1, �) ⊗ S 3

2
(χ2, �) (χ j are certain multipliers and � ⊂ SL2(Z)).

Throughout we write vectors in bold letters and their components with subscripts. The
modular properties of the integral in (1.1) follow from the modularity of f which in
turn gives quantum modular properties of F1. We call the resulting functions higher
depth quantum modular forms. Roughly speaking, depth two quantum modular forms
satisfy, in the simplest case, the modular transformation property with M = (

a b
c d

) ∈
SL2(Z)

f (τ )− (cτ + d)−k f (Mτ ) ∈ Qκ (�)O(R)+O(R), (1.2)

where Qκ (�) is the space of quantum modular forms of weight κ and O(R) the space
of real-analytic functions defined on R ⊂ R. In [5], we proved that F1 and F2 are
components of vector-valued quantum modular forms of depth two, generalizing (1.2).

A natural question that arises is what the other components of the vector-valued
forms are as q-series. To investigate this, we define, for 1 ≤ s1, s2 ≤ p ∈ N,

Fs(q) :=
∑

m1,m2≥1
m1≡m2 (mod 3)

min(m1,m2)q
p
3

((
m1− s1

p

)2+
(

m2− s2
p

)2+
(

m1− s1
p

)(
m2− s2

p

))

×
(

1− qm1s1 − qm2s2 + qm1s1+(m1+m2)s2 + qm2s2+(m1+m2)s1 − q(m1+m2)(s1+s2)
)
.

Note that F(1,1)(q) = F(q). As discussed in [3] these series are in fact parametrized
by dominant integral weights (s1−1)ω1+(s2−1)ω2 for sl3, whereω j are fundamental
weights (dual to simple roots α1 and α2).

We may decompose Fs as in (1.1) (see Lemma 2.1). The corresponding functions
F1,s and F2,s are again generalized quantum modular forms. More precisely, we have.

Theorem 1.1. The functions F1,s and F2,s are depth two quantum modular forms
(with respect to some subgroup) of weights one and two, respectively.

To prove Theorem 1.1, we show that F1,s(τ ) asymptotically agrees to infinite
order with a certain Eichler integral E1,s(

τ
p ) defined in (2.1). Similarly, F2,s(τ )

asymptotically agrees with an Eichler integral E2,s(
τ
p ) given in (2.2).

We next restrict to the special case p = 2. It turns out (see Lemma 2.2) that for
p = 2 all F2,s vanish. Thus we only need to consider F1,s .

Theorem 1.2. For p = 2, the space spanned by E1,(1,1) and E1,(1,2) is essentially
invariant under modular transformations. By this we mean that the only terms
appearing in the modular transformations which do not lie in the space are simpler
(see (2.6) and (2.7) for the case of inversion).
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Motivated by representation theory of the W -algebra W 0(p)A2 studied in [3, 8],
we raise the following.

Conjecture. After multiplication with η2, the characters of W 0(p)A2 given in
[3, Section 5] (which also includes the series Fs) combine into a vector-valued
quantum modular form of depth two.

The second goal of this paper is to determine the asymptotic behavior of E1,s(i t) as
t → 0+. It is well-known that asymptotic behaviors of vector-valued modular forms
(as t → 0+) can be computed by applying the S-transformation τ �→ − 1

τ , and then
analyzing the dominating term. This method is widely used for studying quantum
dimensions of modules of vertex algebras (and affine Lie algebras) as their characters
often transform invariantly under SL2(Z). In this paper we work with functions
(coming also from characters) that transform with higher depth error terms so their
asymptotics are more interesting and harder to analyze. We show that asymptotic
behavior of double Eichler integrals can be also analyzed by using a similar approach.
We do this directly from the integral representation of the error function. In the body
of the paper, we show that it is enough to study

E1,(1,1)(τ ) := 4I(1,3)(τ ) and E1,(1,2)(τ ) := 2I(1,1)(τ )+ 2I(1,5)(τ ), (1.3)

where the theta integrals Ik are defined in (2.3). We prove the following.

Theorem 1.3. We have, as t → 0+,

E1,(1,1)(i t) ∼ 1

4
, E1,(1,2)(i t) ∼ 3

4
.

Note that the asymptotics in Theorem 1.3 agree with the answer which one obtains
from [5] by using two-dimensional false theta functions.
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2. Proof of Theorem 1.1 and Theorem 1.2

To prove Theorem 1.1 and Theorem 1.2, we let

F1,s(q) :=
∑

α∈Ss

εs(α)
∑

n∈N2
0

q pQ(n+α),
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where Q(x1, x2) := 3x2
1 + 3x1x2 + x2

2 and where

Ss :=
{(

s2 − s1

3p
, 1− s2

p

)

,

(

1− s2 − s1

3p
, 1− s1

p

)

,

(
2s1 + s2

3p
, 1− s1 + s2

p

)

,

(
2s2 + s1

3p
, 1− s1 + s2

p

)

,

(

1− s1 + 2s2

3p
,

s2

p

)

,

(

1− s2 + 2s1

3p
,

s1

p

)

,

(
2s1 + s2

3p
, 1− s1

p

)

,

(
2s2 + s1

3p
, 1− s2

p

)

,

(

1− s1 + 2s2

3p
,

s1 + s2

p

)

,

(

1− s2 + 2s1

3p
,

s1 + s2

p

)

,

(
s2 − s1

3p
,

s1

p

)

,

(

1− s2 − s1

3p
,

s2

p

)}

,

εs(α) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s2 if α ∈
{ (

s2−s1
3p , 1− s2

p

)
,
(

1− s1+2s2
3p , s2

p

)
,

(
2s2+s1

3p , 1− s2
p

)
,
(

1− s2−s1
3p , s2

p

) }
,

s1 if α ∈
{ (

1− s2−s1
3p , 1− s1

p

)
,
(

1− s2+2s1
3p , s1

p

)
,

(
2s1+s2

3p , 1− s1
p

)
,
(

s2−s1
3p , s1

p

) }
,

−(s1 + s2) if α ∈
{ (

2s1+s2
3p , 1− s1+s2

p

)
,
(

2s2+s1
3p , 1− s1+s2

p

)
,

(
1− s1+2s2

3p , s1+s2
p

)
,
(

1− s2+2s1
3p , s1+s2

p

) }

and
F2,s(q) :=

∑

α∈Ss

ηs(α)
∑

n∈N2
0

(n2 + α2) q Q(n+α),

where

ηs(α) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if α ∈
{ (

s2−s1
3p , 1− s2

p

)
,
(

1− s2−s1
3p , 1− s1

p

)
,
(

2s1+s2
3p , 1− s1

p

)
,

(
2s2+s1

3p , 1− s2
p

)
,
(

1− s1+2s2
3p , s1+s2

p

)
,
(

1− s2+2s1
3p , s1+s2

p

)}
,

−1 if α ∈
{ (

2s1+s2
3p , 1− s1+s2

p

)
,
(

2s2+s1
3p , 1− s1+s2

p

)
,
(

1− s1+2s2
3p , s2

p

)
,

(
1− s2+2s1

3p , s1
p

)
,
(

s2−s1
3p , s1

p

)
,
(

1− s2−s1
3p , s2

p

) }
.

Remark. We have
F(p,p)(q) = 1.

Thus we may throughout assume that s = (p, p).

Similarly as in the case s = (1, 1), a lengthy calculation gives.

Lemma 2.1. We have

Fs(q) = 1

p
F1,s

(
q p)+ F2,s

(
q p) .



Some Examples of Higher Depth Vector-Valued Quantum Modular Forms 137

The following theorem states quantum modular properties of the functions F1,s and
F2,s , using the method of [4]. Let

E1,s(τ ) :=
∑

α∈S ∗s
εs(α)E1,α(pτ ), (2.1)

where

S ∗s :=
{(

s2 − s1

3p
, 1− s2

p

)

,

(

1− s2 − s1

3p
, 1− s1

p

)

,

(
2s1 + s2

3p
, 1− s1

p

)

,

(
2s2 + s1

3p
, 1− s2

p

)

,

(

1− s1 + 2s2

3p
,

s1 + s2

p

)(

1− s2 + 2s1

3p
,

s1 + s2

p

)}

.

Moreover, the Eichler integrals E1,α are given as

E1,α(τ ) := −
√

3

4

∫ i∞

−τ

∫ i∞

w1

θ1(α;w)+ θ2(α;w)√−i(w1 + τ )√−i(w2 + τ )dw2dw1

with

θ1(α;w) :=
∑

n∈α+Z2

(2n1 + n2)n2e
3π i

2 (2n1+n2)
2w1+ π in2

2w2
2 ,

θ2(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)n1e
π i
2 (3n1+2n2)

2w1+ 3π in2
1w2

2 .

Finally let
E2,s(τ ) :=

∑

α∈S ∗s
E2,α(pτ ). (2.2)

Here

E2,α(τ ) :=
√

3

8π

∫ i∞

−τ

∫ i∞

w1

2θ3(α;w)− θ4(α;w)√−i(w1 + τ )(−i(w2 + τ )) 3
2

dw2dw1

+
√

3

8π

∫ i∞

−τ

∫ i∞

w1

θ5(α;w)
(−i(w1 + τ )) 3

2
√−i(w2 + τ )

dw2dw1

with

θ3(α;w) :=
∑

n∈α+Z2

(2n1 + n2)e
3π i

2 (2n1+n2)
2w1+ π in2

2w2
2 ,

θ4(α;w) :=
∑

n∈α+Z2

(3n1 + 2n2)e
π i
2 (3n1+2n2)

2w1+ 3π in2
1w2

2 ,

θ5(α;w) :=
∑

n∈α+Z2

n1e
π i
2 (3n1+2n2)

2w1+ 3π in2
1w2

2 .
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Furthermore define, for ν ∈ {0, 1}, h ∈ Z, N, A ∈ N with A|N and N |h A, the theta
function studied, for example, by Shimura [11]

ν(A, h, N; τ ) :=
∑

m∈Z
m≡h (mod N)

mνq
Am2

2N2 .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 (Sketch). We start with F1,s. Write

F1,s

(
e2π i h

k−t
)
∼

∑

m≥0

As,h,k(m)t
m (

t → 0+
)
.

Using the Euler-Maclaurin summation formula (in the shape stated in (28) of [4]) one
can prove, following the proof of Theorem 7.1 of [4], that

E1,s

(
i t

2π
− h

k

)

∼
∑

m≥0

As,h,k(m)(−t)m
(
t → 0+

)
.

Here

E1,s(τ ) := 1

2

∑

α∈S ∗s
εs(α)

∑

n∈α+Z2

M2

(√
3;√v

(
2
√

3n1 +
√

3n2, n2

))
q−Q(n),

where w ∈ R2 and κ ∈ R with w2, w1 − κw2 = 0, we set

M2(κ;w) := − 1

π2

∫

R2−iw

e−π t2
1−π t2

2−2π i(t1w1+t2w2)

t2(t2 − κt1)
dt1dt2.

In particular, E1,s agrees with F1,s on Q. Proceeding as in the proof of Lemma 6.1
of [4] one can then show that

E1,s(τ ) = E1,s

(
τ

p

)

.

To determine the transformation behaviour, we rewrite the theta functions in E1,s in
terms of Shimura theta functions to obtain, as in the proof of Proposition 5.2 of [4]

3 pE1,s

(
τ

p

)

= (2s1+s2)J(s2,s2+2s1)(τ )+(2s2+s1)J(s1,s1+2s2)(τ )+(s2−s1)J(s1+s2,s1−s2)(τ ),

where

Jk(τ ) :=
∑

δ∈{0,1}
I(k1+δp,k2+3δp)(τ ) with

Ik(τ ) := −
√

3

4p
I1(2p,k1,2p;·),1(6p,k2,6p,·)(τ ). (2.3)
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Here, for modular forms f and g of weights κ1 and κ2, respectively,

I f,g(τ ) :=
∫ i∞

−τ

∫ i∞

w1

f (w1)g(w2)

(−i(w1 + τ ))2−κ1(−i(w2 + τ ))2−κ2
dw2dw1.

Now the transformation properties follow as in the proof of Proposition 5.2 of [5].
For the function F2,s, we proceed in the same way. Writing

F2,s

(
e2π i h

k−t
)
∼

∑

m≥0

Bs,h,k(m)t
m (

t → 0+
)

we may show in a similar manner as in the proof of Theorem 7.2 of [4], using the
Euler-Maclaurin summation formula, that

E2,s

(
i t

2π
− h

k

)

∼
∑

m≥0

Bs,h,k(m)(−t)m .

Here

E2(τ) = E2,s(τ) := 1

4πi

×
∑

α∈S ∗s

∑

n∈α+Z2

[
∂

∂z

(

M2

(√
3;√3v(2n1 + n2),

√
v

(

n2 − 2 Im(z)

v

))

e2π in2 z
)]

z=0
q−Q(n).

Following the proof of Lemma 6.2 of [4], one may then prove that

E2,s(τ ) = E2,s

(
τ

p

)

.

To finish the proof one may show that, proceeding as in the proof of Proposition 5.2
of [4].

E2,s(τ ) = 2

p

(−J(s1+s2,s1−s2) (τ )+ J(s2,2s1+s2) (τ )+ J(s1,2s2+s1) (τ )
)
,

where

Jk(τ ) :=
∑

δ∈{0,1}
I(k1+pδ,k2+3pδ)(τ ), with

Ik(τ ) := −
√

3

8π
I1(2p,k1,2p;·),0(6p,k2,6p;·)(τ ).

Again the transformation properties follow as in the proof of Proposition 5.5 of [5].
�

We now restrict to p = 2. The following lemma shows the vanishing of F2,s in this
case.

Lemma 2.2. For p = 2, the functions F2,s and E2,s vanish identically.
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Proof. We start by proving that F2,s = 0. It is enough to consider s ∈ {(1, 1), (1, 2)}.
The claim for s = (1, 1) follows directly by plugging in the definition of F2,(1,1) and
canceling terms.

We next consider F2,(1,2). By definition

F2,(1,2)(q) =
∑

α∈S(1,2)

η(1,2)(α)
∑

n∈N2
0

(n2 + α2) q Q(n+α),

where

η(1,2)(α) :=

⎧
⎪⎨

⎪⎩

1 if α ∈
{(

1
6 , 0

)
,
(

5
6 ,

1
2

)
,
(

2
3 ,

1
2

)
,
(

5
6 , 0

)
,
(

1
6 ,

3
2

)
,
(

1
3 ,

3
2

)}
,

−1 if α ∈
{(

2
3 ,− 1

2

)
,
(

5
6 ,− 1

2

)
,
(

1
6 , 1

)
,
(

1
3 ,

1
2

)
,
(

1
6 ,

1
2

)
,
(

5
6 , 1

)}
.

Note that

Hα(q) :=
∑

n∈N2
0

(n2 + α2) q Q(n+α) −
∑

n∈N2
0

(n2 + α2 − 1) q Q(n+(α1,α2−1))

= (1− α2) q
1
4 (α2−1)2

∑

n∈α1+ α2−1
2 +N0

q3n2
.

Thus

F2,(1,2)(q)

= −H(
1
6 ,1

)(q)+ H(
5
6 ,

1
2

)(q)+ H(
2
3 ,

1
2

)(q)− H(
5
6 ,1

)(q)+ H(
1
6 ,

3
2

)(q)+ H(
1
3 ,

3
2

)(q)

= 1

2
q

1
16

∑

n∈ 7
12+N0

q3n2 + 1

2
q

1
16

∑

n∈ 5
12+N0

q3n2 − 1

2
q

1
16

∑

n∈ 5
12+N0

−1

2
q

1
16

∑

n∈ 7
12+N0

q3n2 = 0.

To see that E2,s = 0, it is sufficient to prove

−J(s1+s2,s1−s2) + J(s2,2s1+s2) + J(s1,2s2+s1) = 0,

which is a straightforward computation with theta series.

We are now ready to prove Theorem 1.2.

Sketch of proof of Theorem 1.2. We write

E1,s(τ ) = −
√

3

2

∫ i∞

−τ

∫ i∞

w1

∑
α∈S ∗s ε(α) (θ1(α; 2w)+ θ2(α; 2w))√−i(w1 + τ )√−i(w2 + τ ) dw2dw1.

We next show the identities in (1.3). We start with s = (1, 1). We use the theta
relation

1

2

∑

α∈S ∗(1,1)
ε(α) (θ1(α; 2w)+ θ2(α; 2w))

= 1

2
1(4, 1, 4;w1)1(12, 3, 12;w2). (2.4)
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Equation (2.4) yields

E1,(1,1)(τ ) = −
√

3

2

∫ i∞

−τ

∫ i∞

w1

1(4, 1, 4;w1)1(12, 3, 12;w2)√−i(w1 + τ )√−i(w2 + τ ) dw2dw1

= 4I(1,3)(τ ),

which is the first identity in (1.3).
We next consider E1,(1,2) and use that

∑

α∈S ∗(1,2)
ε(α) (θ1(α; 2w)+ θ2(α; 2w))

= 1

2
1(4, 1, 4;w1) (1(12, 1, 12;w2)+1(12, 5, 12;w2)) . (2.5)

Thus

E1,(1,2)(τ )

= −
√

3

4

∫ i∞

−τ

∫ i∞

w1

1(4, 1, 4;w1) (1(12, 1, 12;w2)+1(12, 5, 12;w2))√−i(w1 + τ )√−i(w2 + τ ) dw2dw1

= 2(I(1,1)(τ )+ I(1,5)(τ )),

which is the second identity in (1.3).
We next use Lemma 5.1 of [5], to obtain

Ik(τ ) = (−iτ )−1 1√
3

5∑

k=1

sin

(
πkk2

6

)

I(k1,k)

(

−1

τ

)

+Ak(τ ),

where Ak contributes the simpler terms mentioned in Theorem 1.2, and is explicitly
given by

Ak(τ ) := −
√

3

8

∫ i∞

0

∫ i∞

w1

1(4, k1, 4;w1)1(12, k2, 12;w2)√−i(w1 + τ )√−i(w2 + τ ) dw2dw1

−
√

3

8
I1(4,k1,4;·)(τ )r1(12,k2,12;·)(τ )+

√
3

8
r1(4,k1,4;·)(τ )r1(12,k2,12;·)(τ ),

where, for f a holomorphic modular form of weight k,

r f (τ ) :=
∫ i∞

0
f (w)(−i(w + τ ))k−2dw.

In particular

E1,(1,1)(τ ) = 1√
3(−iτ )

(

2E1,(1,2)

(

−1

τ

)

− E1,(1,1)

(

−1

τ

))

+ 4A(1,3)(τ ),

E1,(1,2)(τ ) = 1√
3(−iτ )

(

E1,(1,1)

(

−1

τ

)

+ E1,(1,2)

(

−1

τ

))

+ 2A(1,1)(τ )+ 2A(1,5)(τ ).
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Inverting and reordering gives

E1,(1,1)

(

−1

τ

)

= − iτ√
3

(
2E1,(1,2)(τ )− E1,(1,1)(τ )

)

− 4iτ√
3

(
A(1,3)(τ )−A(1,1)(τ )−A(1,5)(τ )

)
, (2.6)

E1,(1,2)

(

−1

τ

)

= − iτ√
3

(
E1,(1,2)(τ )+ E1,(1,1)(τ )

)

+ 2iτ√
3

(
A(1,1)(τ )+A(1,5)(τ )+ 2A(1,3)(τ )

)
. (2.7)

The claim follows using that

E1,(1,1)(τ + 1) = −E1,(1,1)(τ ), E1,(1,2)(τ + 1) = e−
π i
6 E1,(1,2)(τ ). �

3. The asymptotic behavior of H1,α

To prove Theorem 1.3 we need to compute

Hα := lim
t→0+

H1,α
( i

t

)

t
,

where, for α ∈ R2,

H1,α(τ ) := −√3
∫ i∞

0

∫ i∞

w1

θ1 (α;w)+ θ2 (α;w)√−i (w1 + τ )√−i (w2 + τ )dw2dw1.

Proposition 3.1. Assume that α1, α2 are not both in Z. We have

Hα =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
3

sin(2πα1) sin(2πα2)

(1− cos(2πα1)) (1− cos(2πα2))
if α1, α2 ∈ Z,

2
√

3

1− cos(2πα2)
if α1 ∈ Z, α2 ∈ Z,

2

(1− cos(2πα1))
√

3
if α1 ∈ Z, α2 ∈ Z.

Proof. We first rewrite H1,α(τ ). By Theorem 1.2 of [5], we have

H1,α(τ ) =
∫

R2
g1,α(w)e

2π iτQ(w)dw1dw2.

Here we define

g1,α(w) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2Gα1(w1)Gα2(w2)− 2Fα1(w1)Fα2(w2) if α1, α2 /∈ Z,

−2F0(w1)Fα2(w2)+ 2
πw1

Fα2

(
w2 + 3w1

2

)
if α1 ∈ Z, α2 /∈ Z,

−2Fα1(w1)F0(w2)+ 2
πw2

Fα1

(
w1 + w2

2

)
if α1 /∈ Z, α2 ∈ Z,
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setting

Fα(x) := sinh(2πx)

cosh(2πx)− cos(2πα)
, Gα(x) := sin(2πα)

cosh(2πx)− cos(2πα)
.

Applying the two-dimensional saddle point method gives that

Hα = g1,α(0, 0)√
3

.

Explicitly computing g1,α(0, 0) yields the claim of Proposition 3.1.

4. Proof of Theorem 1.3.

Inverting (2.6) and (2.7) gives

E1,(1,1)(τ ) = 1√
3(−iτ )

(

2E1,(1,2)

(

−1

τ

)

− E1,(1,1)

(

−1

τ

))

+ 4√
3(−iτ )

(

A(1,3)

(

−1

τ

)

−A(1,1)

(

−1

τ

)

−A(1,5)

(

−1

τ

))

,

E1,(1,2)(τ ) = 1√
3(−iτ )

(

E1,(1,2)

(

−1

τ

)

+ E1,(1,1)

(

−1

τ

))

− 2√
3(−iτ )

(

A(1,1)

(

−1

τ

)

+A(1,5)

(

−1

τ

)

+ 2A(1,3)

(

−1

τ

))

.

We next rewrite the first summand of A(1, j), denoting it by B(1, j). For this, we again
use the theta relations (2.4) and (2.5). This yields

B(1,3)(τ ) = 1

16

∑

α∈S ∗(1,1)
ε(α)H1,α(2τ ), B(1,1)(τ )+B(1,5)(τ ) = 1

8

∑

α∈S ∗(1,2)
ε(α)H1,α(2τ ).

Thus

E1,(1,1)(τ ) = 1√
3(−iτ )

(

2E1,(1,2)

(

−1

τ

)

− E1,(1,1)

(

−1

τ

))

+ 1

2
√

3(−iτ )

⎛

⎜
⎝

1

2

∑

α∈S ∗(1,1)
ε(α)H1,α

(

−2

τ

)

−
∑

α∈S ∗(1,2)
ε(α)H1,α

(

−2

τ

)
⎞

⎟
⎠

− 1

2(−iτ )

(

I1(4,1,4)

(

−1

τ

)

− r1(4,1,4)

(

−1

τ

))

×
(

r1(12,3,12)

(

−1

τ

)

− r1(12,1,12)

(

−1

τ

)

− r1(12,5,12)

(

−1

τ

))

,
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E1,(1,2)(τ ) = 1√
3(−iτ )

(

E1,(1,2)

(

−1

τ

)

+ E1,(1,1)

(

−1

τ

))

− 1

4
√

3(−iτ )

⎛

⎜
⎝

∑

α∈S ∗(1,1)
ε(α)H1,α

(

−2

τ

)

+
∑

α∈S ∗(1,2)
ε(α)H1,α

(

−2

τ

)
⎞

⎟
⎠

+ 1

4(−iτ )

(

I1(4,1,4,1)

(

−1

τ

)

− r1(4,1,4)

(

−1

τ

)(

2r1(12,3,12; · )
(

−1

τ

)

+r1(12,1,12; · )
(

−1

τ

)

+ r1(12,5,12; · )
(

−1

τ

)))

.

Letting τ = i t → 0 yields

E1,(1,1)(i t)

∼ 1

8
√

3

⎛

⎜
⎝

∑

α∈S ∗(1,1)
ε(α)Hα − 2

∑

α∈S ∗(1,2)
ε(α)Hα

⎞

⎟
⎠+ 1

2
(h3 − h1 − h5), (4.1)

E1,(1,2)(i t)

∼ − 1

8
√

3

⎛

⎜
⎝

∑

α∈S ∗(1,1)
ε(α)Hα +

∑

α∈S ∗(1,2)
ε(α)Hα

⎞

⎟
⎠− 1

4
(2h3 + h1 + h5), (4.2)

where

h j := lim
t→0

1

t
r1(4,1,4; · )

(
i

t

)

r1(12, j,12; · )
(

i

t

)

.

We have
∑

α∈S ∗s
ε(α)Hα = s2 H(

s2−s1
6 ,1− s2

2

) + s1 H(
1− s2−s1

6 ,1− s1
2

)

+ s1 H(
2s1+s2

6 ,1− s1
2

) + s2 H(
2s2+s1

6 ,1− s2
2

)

− (s1 + s2)H(
1− s1+2s2

6 ,
s1+s2

2

) − (s1 + s2)H(
1− s2+2s1

6 ,
s1+s2

2

).

In particular, using Proposition 1.1, we evaluate
∑

α∈S ∗(1,1)
ε(α)Hα = 2√

3
,

∑

α∈S ∗(1,2)
ε(α)Hα = 16√

3
. (4.3)

To compute limt→0 t− 1
2 r1(N,a,N ; · )( i

t ) we employ Lemma 3.2 of [5] to obtain

r1(N,a,N ; · )
(

i

t

)

= i
√

N

2
sin

(
2πa

N

)∫

R

e− πN
t x2

sinh
(
πx + π ia

N

)
sinh

(
πx − π ia

N

)dx .
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The saddle point method then yields that

r1(N,a,N ; · )
(

i

t

)

= i
√

t cot
(πa

N

)
.

Thus

h j = cot

(
π j

12

)

.

In particular

h1 = − cot
( π

12

)
, h3 = −1, h5 = − cot

(
5π

12

)

.

Plugging this and (4.3) into (4.1) and (4.2) gives the claim.

5. Simplification for p = 2

We first recall the one-dimensional situation for p = 2. There is a unique false theta
function

∑

n∈Z
sgn

(

n + 1

2

)

q
2
(

n+ 1
4

)2

,

whose corresponding Eichler integral is (see [3])

F∗1,2(τ ) := −2i
∫ i∞

−τ̄
1(4, 1, 4;w)√−i(w + τ ) dw.

Noting that
1(4, 1, 4; τ ) = η(τ )3, (5.1)

this integral transforms as a scalar-valued quantum modular form of weight 1
2 .

In the two-dimensional case, a similar “higher depth” picture emerges. Observing
(5.1) and

1(12, 3, 12; τ ) = 3η(3τ )3,

1(12, 1, 12; τ )+1(12, 5, 12; τ ) = 3η(3τ )3 + η
(τ

3

)3

we obtain that the space spanned by E1,(1,1)(τ ) and E1,(1,2)(τ ) is also spanned by

∫ i∞

−τ

∫ i∞

w1

η(w1)
3η(3w2)

3

√−i(w1 + τ )√−i(w2 + τ )dw2dw1,

∫ i∞

−τ

∫ i∞

w1

η(w1)
3η

(w2
3

)3

√−i(w1 + τ )√−i(w2 + τ )dw2dw1. (5.2)

The next result can be found in [10, Corollary 6.6] (it can be also derived by using
representation theory of ŝl3 as discussed in [2]).
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Proposition 5.1. We have

η(τ )
∑

m,n∈Z
qm2+n2−mn = 3η(3τ )3 + η

(τ

3

)3
,

η(τ )q
1
3

∑

m,n∈Z
qm2+n2−mn+n = 3η(3τ )3.

According to [9],
∑

m,n∈Z qm2+n2−mn and q
1
3
∑

m,n∈Z qm2+n2−mn+n are numerators

of two characters of irreducible highest weight ŝl3-modules of level one. Therefore
modular properties of the double Eichler integrals in (5.2), modulo correction factors,
are identical to modular transformation properties of the span of characters of the
level one simple affine vertex algebra of ŝl3. It would be interesting to understand a
possible connection from a purely representation theoretic perspective. This is closely
related to a conjecture of Creutzig and the third author [8] pertaining to quantum
modular properties of characters of W 0(p)A2 , representations of affine Lie algebras,
and representations of quantum groups at a root of unity (see also [1, 6, 7] for other
appearances of this and related vertex algebras).
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1. The Bohr-Jessen limit theorem

We begin with the classical result of Bohr and Jessen [3] on the value-distribution of
the Riemann zeta-function ζ(s).

Let R be a rectangle in the complex plane C with the edges parallel to the axes.
Let s = σ + i t be a complex variable. By μ1 we mean the 1-dimensional Lebesgue
measure. For σ > 1/2 and T > 0, we define

Vσ (T , R; ζ ) = μ1{t ∈ [−T , T ] | log ζ(σ + i t) ∈ R}, (1.1)

where the rigorous definition of log ζ(σ + i t) will be given later (in Section 2). Then
the result of Bohr and Jessen can be stated as follows.

Theorem 1.1 (Bohr and Jessen [3]).

(i) There exists the limit

Wσ (R; ζ ) = lim
T→∞

1

T
Vσ (T , R; ζ ). (1.2)

(ii) This limit can be written as

Wσ (R; ζ ) =
∫

R
Fσ (z, ζ )|dz|, (1.3)

where z = x + i y ∈ C, |dz| = dxdy/2π , and Fσ (z, ζ ) is a continuous
non-negative, explicitly constructed function defined on C.

147
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The limit Wσ (R; ζ ) may be regarded as the probability of how many values of
log ζ(σ + i t) on the line �s = σ belong to the given rectangle R, and Fσ (z, ζ )
may be called the density function of this probability. Theorem 1.1 is now called the
Bohr-Jessen limit theorem.

Remark 1.2. A reformulation of this type of results in terms of weak convergence of
probability measures was given by Laurinčikas (see [21]).

The original proof of Bohr and Jessen is of some geometric flavor. Their proof starts
with the expression

log ζ(σ + i t) = −
∞∑

n=1

log(1− p−σ−i t
n ), (1.4)

where pn is the nth prime, which is valid for σ > 1. They consider the truncation

fN (σ + i t) = −
N∑

n=1

log(1− p−σ−i t
n ) = −

N∑

n=1

log(1− p−σn e−i t log pn ), (1.5)

which, even in the case 1/2 < σ ≤ 1, approximates log ζ(σ + i t) in a certain mean
value sense. A key idea of Bohr and Jessen is to introduce the auxiliary mapping
SN : TN → C associated with fN (σ+i t) (where TN � [0, 1)N is the N -dimensional
unit torus) defined by

SN (θ1, . . . , θN ; ζ ) = −
N∑

n=1

log(1− p−σn e2π iθn ) (0 ≤ θn < 1). (1.6)

Let zn(θ; ζ ) = − log(1 − p−σn e2π iθ ). Then each term zn(θn; ζ ) on the right-hand
side of (1.6) describes a planar convex curve when θn varies from 0 to 1. Therefore
SN (θ1, . . . , θN ; ζ ) is a kind of geometric “sum” of convex curves. Bohr and Jessen
[4] developed a detailed theory on such sums of convex curves, and applied it to the
proof of their Theorem 1.1.

Later Jessen and Wintner [16] published an alternative proof of Theorem 1.1, which
is more analytic (Fourier theoretic). In their proof they used a certain inequality (the
Jessen-Wintner inequality), which is also related with convex properties of curves.

We also note that the analogue of Theorem 1.1 for (ζ ′/ζ )(s)was shown by Kershner
and Wintner [20]. As for the explicit construction of the density function, see van
Kampen and Wintner [18].

2. A generalization of the Bohr-Jessen limit theorem

It is a natural question to ask how to generalize Theorem 1.1, the Bohr-Jessen
limit theorem, to more general zeta and L-functions. An obstacle is that, in more
general situation, the geometry of corresponding curves becomes more complicated;
especially, the convexity is not valid in general.
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Still, however, the part (i) of Theorem 1.1 can be generalized to a fairly general
class of zeta-functions.

Let N be the set of positive integers. For any n ∈ N, let g(n) ∈ N, f (k, n) ∈ N and
a(k)n ∈ C (1 ≤ k ≤ n). Using the polynomials given by

An(X) =
g(n)∏

k=1

(
1− a(k)n X f (k,n)

)
,

we define the zeta-function ϕ(s) by the Euler product

ϕ(s) =
∞∏

n=1

An(p−s
n )−1. (2.1)

Assume
g(n) ≤ C0 pαn , |a(k)n | ≤ pβn (2.2)

with constants α, β ≥ 0, C0 > 0. Then (2.1) is convergent absolutely in the region
�s > α + β + 1.

Let Mαβ be the set of all functions ϕ(s) defined as above, satisfying (2.2) and the
following:

(i) ϕ(s) can be continued meromorphically to σ ≥ σ0, where α + β + 1/2 ≤ σ0 <

α+β+1, and all poles in this region are included in a compact subset of {s | σ >
σ0},

(ii) ϕ(σ + i t) = O((|t| + 1)C
′
0) for any σ ≥ σ0, with a constant C ′0 > 0,

(iii) It holds that
∫ T

−T
|ϕ(σ0 + i t)|2dt = O(T ). (2.3)

The class
M =

⋃

α,β≥0

Mαβ

was first introduced by the first author [23]. For σ > σ0, define

Vσ (T , R;ϕ) = μ1{t ∈ [−T , T ] | log ϕ(σ + i t) ∈ R}, (2.4)

where the definition of log ϕ(s) (for ϕ ∈M ) is as follows. First, when σ > α+β+ 1
define

log ϕ(s) = −
∞∑

n=1

g(n)∑

k=1

Log
(

1− a(k)n p− f (k,n)s
n

)
,

where Log means the principal branch. Next, let

G(ϕ) = {s | σ ≥ σ0}
∖⋃

ρ

{σ + i
ρ | σ0 ≤ σ ≤ �ρ},
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where ρ runs over all zeros and poles ρ with �ρ ≥ σ0. For any s ∈ G(ϕ), define
log ϕ(s) by the analytic continuation along the horizontal path from the right.

In this general situation, the corresponding mapping is

SN (θ1, . . . , θN ;ϕ) =
N∑

n=1

zn(θn;ϕ) (0 ≤ θn < 1), (2.5)

where

zn(θn;ϕ) = −
g(n)∑

k=1

log(1− a(k)n p− f (k,n)σ
n e2π i f (k,n)θn ). (2.6)

In [23], the following generalization of Theorem 1.1 (i) was shown.

Theorem 2.1 ([23]). If ϕ ∈M , then for any σ > σ0, the limit

Wσ (R;ϕ) = lim
T→∞

1

2T
Vσ (T , R;ϕ) (2.7)

exists.

It can be seen that the class M includes a lot of important zeta and L-functions. The
reason why such general statement can be shown is that, for the proof of this theorem,
geometric properties of corresponding curves (2.6) are not necessary. In fact, the proof
of Theorem 2.1 is just based on (besides simple arithmetic facts) Prokhorov’s theorem
in probability theory.

An alternative proof is given in [24] in the case of Dedekind zeta-functions of
algebraic number fields. The method in [24] is to use Lévy’s convergence theorem,
again in probability theory. This method can also be applied to general ϕ ∈M , which
is pointed out in [25] and a sketch of the argument in the general case is described
in [28].

Therefore, now we can say that the part (i) of Theorem 1.1 has been sufficiently
generalized. However Theorem 1.1 includes the part (ii). The part (ii) gives an explicit
expression of the limit value in terms of the density function, so it is highly desirable
to generalize the part (ii) also, in order to study the behavior of the limit Wσ (R;ϕ)
more closely.

However this part is related with the geometry of corresponding curves, and its
generalization is much more difficult. Joyner [17] discussed the properties of density
functions in the case of Dirichlet L-functions, and the first author [24] studied the
density functions for Dedekind zeta-functions of Galois number fields, but both of
them are the cases when the corresponding curves (2.6) are convex.

In the case of automorphic L-functions, the corresponding (2.6) is not always
convex. The study in this case will be given in later sections.

3. M-functions

The theorems of Bohr-Jessen type consider the situation when t = 
s varies. That is,
Theorems 1.1 and 2.1 are results in t-aspect. When we consider more general zeta
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and L-functions, it is also important to study the value-distribution in some different
aspect. For example, it is possible to consider the modulus aspect for Dirichlet or
Hecke L-functions.

Let χ be a certain character, and L(s, χ) be the associated L-function (over a certain
number field or function field). Ihara [10] studied the behavior of (L ′/L)(s, χ) from
this aspect, and proved the limit formula of the form

Avgχ�

(
L ′

L
(s, χ)

)

=
∫

C

Mσ (z)�(z)|dz| (3.1)

for a certain average (specified below) with respect to χ , where � is a test function,
and Mσ : C→ R is an explicitly constructed density function, which is non-negative,
and belongs to the class C∞. Ihara called this Mσ the “M-function” associated with
the value-distribution of L(s, χ).

When σ > 1, Ihara proved (3.1) for any continuous test function �. In the function
field case, using the (proved) Riemann hypothesis, Ihara proved (3.1) even in some
subregion in the critical strip for more restricted class of � (e.g. σ > 3/4 when
� ∈ L1 ∩ L∞ and moreover its Fourier transform has compact support).

As for the meaning of Avgχ , Ihara considered several types of averages, but when
the ground field is the rational number field Q, the meaning is one of the following:
The first type is

Avgχφ(χ) = lim
m→∞

1

π(m)

∑

2<p≤m

1

p − 2

∑

χ(mod p)

∗
φ(χ) (3.2)

for a complex-valued function φ of χ , where π(m) denotes the number of primes
up to m, p runs over primes, and

∑∗ stands for the sum over primitive Dirichlet
characters of modulus p. The second type is considered for the character χτ (p) =
p−iτ . Then the Euler product of the associated L-function is

∏

p

(1− χτ (p)p−s)−1 =
∏

p

(1− p−s−iτ )−1 = ζ(s + iτ ),

and the meaning of the average is given by

Avgχφ(χ) = lim
T→∞

1

2T

∫ T

−T
φ(χτ )dτ. (3.3)

The second type of average actually implies a limit formula for the Riemann
zeta-function in t-aspect. In particular, the formula (3.1) for this second type of
average, with � being the characteristic function of R, coincides with the formulation
of Kershner and Wintner [20]. An important discovery in Ihara [10] is that the same
function Mσ can be used in the formula (3.1) for both of the meanings of average.

Now we restrict ourselves to the case when the ground field is Q, so the meaning
of the average is (3.2) or (3.3). We also consider the value-distribution of log L(s, χ),
so the corresponding limit formula is of the form

Avgχ� (log L(s, χ)) =
∫

C

Mσ (z)�(z)|dz| (3.4)

with the density function Mσ .
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Theorem 3.1 (Ihara and Matsumoto [12] [14]). For any σ > 1/2, and for the
average (3.2) or (3.3), both (3.1) and (3.4) hold with explicitly constructed density
functions (“M-functions”) Mσ and Mσ , for any test function � which is (i) any
bounded continuous function, or (ii) the characteristic function of either a compact
subset of C or the complement of such a subset.

In the number field case the Riemann hypothesis is surely not yet proved, but
instead, we can apply certain mean value estimates to obtain the above theorem.
Therefore Theorem 3.1 is unconditional. In particular, this theorem includes the
Bohr-Jessen limit theorem, and its ζ ′/ζ analogue due to Kershner and Wintner, as
special cases.

If we assume the Riemann hypothesis (for Dirichlet L-functions), even stronger
result can be shown. In [13], the average

Avgχφ(χ) = lim
p→∞

1

p − 2

∑

χ(mod p)

∗
φ(χ) (3.5)

was considered, and for this average, both (3.1) and (3.4) were proved for more
general class of test functions (that is, (i) of Theorem 3.1 is replaced by any continuous
function with at most exponential growth) under the assumption of the Riemann
hypothesis.

The corresponding study for M-functions in the function field case was done in [11,
13].

Here we mention several further researches in the theory of M-functions. Let D a
fundamental discriminant, and χD the associated real character. Mourtada and Murty
[33] studied the value-distribution of (L ′/L)(σ, χD) (where σ > 1/2) in D-aspect,
and proved a limit formula similar to (3.1) under the assumption of the Riemann
hypothesis. Akbary and Hamieh [1] proved an analogous result for the cubic character
case, without the assumption of the Riemann hypothesis.

As for the value-distribution of (ζ ′/ζ )(s) in t-aspect, there is another approach due
to Guo [7] [8]. Inspired by the idea of Guo, Mine [29] proved the existence (and
the explicit construction) of the M-function for (ζ ′K/ζK )(s) in t-aspect, where ζK (s)
denotes the Dedekind zeta-function of an algebraic number field K (including the
non-Galois case), with an explicit error estimate in the limit formula of the form (3.1).
In [31], he extended the result to the case of more general L-functions, belonging to a
certain subclass of M .

In his another paper [30], Mine treated the limit theorem of Bohr-Jessen type (but
without taking logarithm) for Lerch zeta-functions, and proved a refinement, written
in terms of the associated M-function. This paper of Mine implies that the theory of
M-functions works for zeta-functions without Euler products.

Suzuki [39] discovered that certain M-function appears even in a rather different
context. He studied the zeros of the real or imaginary part of

ξ(s) = 1

2
s(s − 1)π−s/2�(s/2)ζ(s),
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and proved that the distribution of spacings of the second-order normalization of
imaginary parts of those zeros can be represented by an integral involving the
M-function for (ζ ′/ζ )(s).

4. The value-distribution of automorphic L-functions (the modulus
and level aspects)

At the end of the preceding section we saw that M-functions have been studied for
various zeta and L-functions. Since one of the most important classes of L-functions
is the class of automorphic L-functions, it is natural to ask how is the theory of
M-functions associated with automorphic L-functions.

First we fix the notation. Let k be an even integer and N positive integer, and let
Sk(N) be the set of holomorphic cusp forms of weight k for �0(N). We write the
Fourier expansion of f ∈ Sk(N) as

f (z) =
∞∑

n=1

λ f (n)n
(k−1)/2e2π inz,

and define the attached L-function by

L( f, s) =
∞∑

n=1

λ f (n)n
−s

for �s = σ > 1. Now we assume that f ∈ Sk(N) is a primitive form, that is, a
normalized Hecke-eigen newform. Then L(s, f ) has the Euler product

L( f, s) =
∏

p|N
(1− λ f (p)p−s)−1

∏

p�N

(1− λ f (p)p−s + p−2s)−1

=
∏

p|N
(1− λ f (p)p−s)−1

∏

p�N

(1− α f (p)p−s)−1(1− β f (p)p−s)−1

for σ > 1, where |α f (p)| = 1, β f (p) = α f (p), and α f (p) + β f (p) = λ f (p) (for
p � N ).

First consider the modulus aspect. Let χ be a Dirichlet character. The twisted
L-function L( f ⊗χ, s) is defined by replacing p−s by χ(p)p−s on each local factor.
Lebacque and Zykin [22] developed the theory similar to [13] for L( f ⊗ χ, s), and
proved the limit formulas corresponding to (3.1) and (3.4).

More difficult is the case of the level aspect. So far there are two attempts in this
direction, the aforementioned paper of Lebacque and Zykin [22], and an article of the
authors [27]. Here we briefly mention the results proved in [27].

Let γ ∈ N, and define the (partial) γ th symmetric power L-function attached to
f by

L N (Symγ
f , s) =

∏

p�N

γ∏

h=0

(1− αγ−h
f (p)βh

f (p)p−s)−1 (4.1)

for σ > 1.
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Here we consider the situation N = qm , where q is a prime number. Then the form
of the right-hand side of (4.1) is the same for all m, which we denote by

Lq(Symγ
f , s) =

∏

p �=q

γ∏

h=0

(1− αγ−h
f (p)βh

f (p)p−s)−1 (4.2)

for σ > 1. Let μ, ν ∈ N, μ − ν = 2. By Q(μ) we denote the smallest prime
number satisfying 2μ/

√
Q(μ) < 1. The main results in [27] is the limit formula for

the value-distribution of the difference

log Lq(Symμ
f , σ )− log Lq(Symν

f , σ )

(see Theorem 4.1 below).
In the proof of limit theorems mentioned in the present article, some kind of

“independence” or “orthogonality” properties are necessary. For example, in the
proof of Theorem 1.1 and Theorem 2.1, the Kronecker-Weyl theorem on the uniform
distribution of sequences is used. Ihara’s argument [10] for L-functions is based on
the orthogonality of Dirichlet characters. In the present situation, the necessary tool is
supplied by Petersson’s formula, in the form shown in the second author’s article [9].
In view of the formula in [9], we define the following weighted sum for any sequence
{A f } over primitive forms f ∈ Sk(qm):

∑

f

′
A f = 1

Ck(1− Cq(m))

∑

f

A f

〈 f, f 〉P , (4.3)

where

Ck = (4π)k−1

�(k − 1)
, Cq(m) =

⎧
⎪⎪⎨

⎪⎪⎩

0, m = 1,

q(q2 − 1)−1, m = 2,

q−1, m ≥ 3,

the symbol 〈, 〉P is the Petersson inner product, and the sum on the right-hand side of
(4.3) runs over all primitive forms belonging to Sk(qm).

We define two types of averages in the level aspect. The first one is

Avgprime�(log Lq(Symμ
f , σ )− log Lq(Symν

f , σ ))

= lim
q→∞

∑

f

′
�(log Lq(Symμ

f , σ )− log Lq(Symν
f , σ )) (4.4)

for fixed m, where � : R→ C is a test function. The second one is

Avgpower�(log Lq(Symμ
f , σ )− log Lq(Symν

f , σ ))

= lim
m→∞

∑

f

′
�(log Lq(Symμ

f , σ )− log Lq(Symν
f , σ )) (4.5)

for fixed q, where q is a prime and q ≥ Q(μ) if 1 ≥ σ > 1/2.
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Theorem 4.1 ([27]). Let f ∈ Sk(N) be a primitive form, 2 ≤ k < 12 or k = 14,
and N = qm with a certain prime q. Let μ, ν ∈ N, μ − ν = 2. We assume
that the symmetric power L-functions Lq(Symμ

f , s), Lq(Symν
f , s) can be continued

holomorphically to σ > 1/2, satisfy the estimate� qm(|t| + 2) in the strip 2 ≥ σ >
1/2, and have no zero in 1 ≥ σ > 1/2. Then, for any σ > 1/2, there exists a density
function Mσ : R → R≥0 which can be explicitly constructed, and for which the
formula

Avgprime�(log Lq(Symμ
f , σ )− log Lq(Symν

f , σ ))

= Avgpower�(log Lq(Symμ
f , σ )− log Lq(Symν

f , σ ))

=
∫

R

Mσ (u)�(u)
du√
2π

(4.6)

holds for any test function � which is bounded continuous, or a compactly supported
characteristic function.

In this theorem we require several assumptions, which are plausible but seem very
difficult to prove. The main reason of using those assumptions is that we have no idea
of showing suitable mean value estimates for symmetric power L-functions.

For any σ > 1, since μ− ν = 2, we have

log Lq(Symμ
f , s)− log Lq(Symν

f , s)

=
∑

p �=q

(− log(1− αμf (p)p−s)− log(1− βμf (p)p−s)).

If we could find a method for the study of Avgprime and Avgpower of the right-hand
side of the above equation in the case μ = 1, it would imply the limit theorem for
log L( f, s) similar to (3.4), but at present we cannot extend the theorem to log L( f, s).
(The theorem is shown only for μ ≥ 3.)

Lebacque and Zykin [22] studied log L( f, s) and (L ′/L)( f, s) along the line of
[13], and obtained a result analogous to [13, Theorem 1]. However their argument also
does not arrive at the limit theorem for log L( f, s) or (L ′/L)( f, s) of the form (3.1)
or (3.4).

5. The value-distribution of automorphic L-functions (the t-aspect)

Now we return to the matter of t-aspect. As we mentioned in Section 2, the part (ii) of
Theorem 1.1 has been generalized only for some special cases when convex properties
can be used.

Automorphic L-functions are typical examples for which the corresponding curves
are not always convex, so it is important how to generalize the part (ii) of Theorem 1.1
to the case of automorphic L-functions L( f, s). This has been done in [28].

Since L( f, s) ∈ M00, the existence of the limit Wσ (R; L( f, ·)) (for σ > 1/2) is
already known by Theorem 2.1.
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Theorem 5.1 ([28]). For any σ > 1/2, there exists a continuous non-negative function
Mσ (z, L( f, ·)), explicitly defined on C, for which

Wσ (R; L( f, ·)) =
∫

R
Mσ (z, L( f, ·))|dz| (5.1)

holds.

Remark 5.2. Once (5.1) is proved, then we can deduce

lim
T→∞

1

2T

∫ T

−T
�(log L( f, s + iτ ))dτ =

∫

C

Mσ (z, L( f, ·))�(z)|dz| (5.2)

for any test function � as in the statement of Theorem 3.1, by the argument given in
[12, Remark 9.1]. Note that the left-hand side of (5.2) is the function of variable s, but
the M-function on the right-hand side depends only on σ = �s.

The basic structure of the proof of Theorem 5.1 in [28], which we briefly outline
here, is along the line similar to [24]. Actually in [28], we are working in more general
situation, that is in the class M . Let ϕ ∈M . Define the integral

Kn(w;ϕ) =
∫ 1

0
exp (i〈zn(θn;ϕ),w〉) dθn (n ∈ N), (5.3)

where zn(θn;ϕ) is defined by (2.6) and 〈z, w〉 = �z�w + 
z
w. In [28], we prove
the following

Lemma 5.3 ([28]). If there are at least five n’s for which

Kn(w;ϕ) = On(|w|−1/2) (|w| → ∞) (5.4)

holds, then we can find a continuous non-negative function Mσ (z, ϕ) for σ > σ0 by
which we can write

Wσ (R;ϕ) =
∫

R
Mσ (z, ϕ)|dz|. (5.5)

Moreover Mσ (z, ϕ) is explicitly given by

Mσ (z, ϕ) =
∫

C

e−i〈z,w〉�(w;ϕ)|dw|, (5.6)

where

�(w;ϕ) =
∫

C

ei〈z,w〉dWσ (z;ϕ). (5.7)

Therefore the main problem is reduced to the proof of (5.4). Jessen and Wintner
[16] proved that Kn(w, ϕ) = O(|w|−1/2) for any n, when the corresponding curves
are convex. This is the original Jessen-Wintner inequality.

Now consider the case of automorphic L-functions. Let P f (ε) be the set of primes
p satisfying |λ f (p)| > √2 − ε. Then P f (ε) is of positive density (M. R. Murty [34]
for the full modular case, and M. R. Murty and V. K. Murty [35] for any level N ).
In [28], we observed geometric behavior of the corresponding curves and proved
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Lemma 5.4 ([28]). If pn ∈ P f (ε) and n is sufficiently large, then

Kn(w; L( f, ·)) = Oε
(

pσ/2n |w|−1/2 + pσn |w|−1
)

(5.8)

holds.

Since P f (ε) is of positive density, obviously we can find more than five (actually
infinitely many) n’s for which (5.8) is valid. Therefore using Lemma 5.3 we can
deduce the conclusion of Theorem 5.1.

6. The value-distribution of symmetric power L-functions (the t-aspect)

Now we proceed to state our new results in the present paper, on the value-distribution
of symmetric power L-functions. The proof of the results stated in this section will be
given in Sections 7 and 8.

Assume N is square-free and let f ∈ Sk(N) be a primitive form. First consider the
case γ = 2, that is the symmetric square L-functions

L(Sym2
f , s) = L N (Sym2

f , s)
∏

p|N
(1− λ f (p2)p−s)−1,

where L N (Sym2
f , s) is defined by (4.1).

Let

�(Sym2
f , s) = Nsπ−3s/2�

(
s + 1

2

)

�

(
s + k − 1

2

)

�

(
s + k

2

)

L(Sym2
f , s).

Then it is known (Shimura [38], Gelbart and Jacquet [6]; see also [15]) that
�(Sym2

f , s) can be continued to an entire function, and satisfies the functional
equation

�(Sym2
f , s) = �(Sym2

f , 1− s). (6.1)

Because of (6.1), we can apply the general theorem of Kanemitsu, Sankaranarayanan
and Tanigawa [19]. The part (iii) of their Theorem 1 implies that, in the strip
2/3 < σ < 1, it holds that

∫ T

1
|L(Sym2

f , σ + i t)|2dt = C2(σ, f )T + O
(

T 2−(3/2)σ+ε) (6.2)

for any ε > 0, where C2(σ, f ) is a constant depending on σ and f . (Note that the
first author [26] developed a more refined general theory, which improves the error
estimate in (6.2) to O(T 3−3σ+ε); see [26, (3.10)].) From (6.2) we find that

∫ T

1
|L(Sym2

f , σ + i t)|2dt = O(T ) (6.3)

for σ > 2/3. This is condition (iii) of the class M00. Condition (ii) also follows from
(6.1) by invoking the Phragmén-Lindelöf principle. Therefore L(Sym2

f , ·) ∈ M00,

so the method in [28] can be applied to L(Sym2
f , ·). The result is
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Theorem 6.1. Let N be a square-free integer, and f ∈ Sk(N) a primitive form. For
any σ > 2/3, there exists a continuous non-negative function Mσ (z, L(Sym2

f , ·)),
explicitly defined on C, for which

lim
T→∞

1

2T

∫ T

−T
�(log L(Sym2

f , s+ iτ ))dτ =
∫

C

Mσ (z, L(Sym2
f , ·))�(z)|dz| (6.4)

holds for any test function � as in the statement of Theorem 3.1.

Next consider more general symmetric power L-functions. Recall the partial
L-function L N (Symγ

f , s) (see (4.1)) associated with a primitive form f ∈ Sk(N),

where N is a positive integer. It is known that L N (Symγ
f , s) has meromorphic

continuation to the whole complex plane (see [2]). We assume the following

Assumption 6.2. There are predicted local factors L p(Symγ
f , s) for p | N and

L N (Symγ
f , s) satisfies the functional equation

�(Symγ
f , s) = εγ, f�(Symγ

f , 1− s), (6.5)

where |εγ, f | = 1 and

�(Symγ
f , s) = qs/2

γ, f �̃γ (s)L N (Symγ
f , s)

∏

p|N
L p(Symγ

f , s)

with the conductor qγ, f and the “gamma factor” �̃γ (s). Here, the gamma factor is
written by

�̃γ (s) = π−(γ+1)s/2
γ+1∏

j=1

�

(
s + κ j,γ

2

)

, (6.6)

where κ j,γ ∈ R, and each local factor for p|N is written as

L p(Symγ
f , s) = (1− λp,γ, f p−s)−1, |λp,γ, f | ≤ p−γ /2 (6.7)

(see Cogdell and Michel [5], Moreno and Shahidi [32], Rouse [36], and Rouse and
Thorner [37]).

The above assumptions are reasonable in view of the Langlands functoriality
conjecture. Now define the γ th symmetric power L-function

L(Symγ
f , s) = L N (Symγ

f , s)
∏

p|N
L p(Symγ

f , s).

From (4.1) and (6.7) we see that the Dirichlet series expansion of L(Symγ
f , s) is of the

form
∑∞

n=1 cnn−s , |cn | � nε. Since the gamma factor is given by (6.6), again using
the general result of [19], we obtain

∫ T

1
|L(Symγ

f , σ + i t)|2dt = Cγ (σ, f )T + O
(

T 1+(γ /2)−((γ+1)/2)σ+ε) (6.8)
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in the strip 1 − 1/(γ + 1) < σ < 1, with a certain constant Cγ (σ, f ). Therefore
L(Symγ

f , ·) ∈M00.
Another tool we use is the following quantitative version of the Sato-Tate conjecture

due to Thorner [40]. We write α f (p) = eiθ f (p); we may assume 0 ≤ θ f (p) ≤ π . Let
I be any subset of [0, π ], and let

πI (x) = #{p : prime | p ≤ x, θ f (p) ∈ I }.
Then Thorner’s result is, under Assumption 6.2,

πI (x)

π(x)
= 2

π

∫ b

a
sin2 θdθ + O

(
x

π(x)(log x)9/8−ε

)

(6.9)

for any ε > 0, where I = [a, b]. (Under the assumption of the GRH for L(Symγ
f , s),

sharper estimates for the error term are known.)

Theorem 6.3. Let N be a positive integer. Let f ∈ Sk(N) be a primitive form which
is not of CM-type. Let γ ≥ 2, and assume Assumption 6.2. Then, for any σ >

1 − 1/(γ + 1), there exists a continuous non-negative function Mσ (z, L(Symγ
f , ·)),

explicitly defined on C, for which

lim
T→∞

1

2T

∫ T

−T
�(log L(Symγ

f , s + iτ ))dτ

=
∫

C

Mσ (z, L(Symγ
f , ·))�(z)|dz| (6.10)

holds for any test function � as in the statement of Theorem 3.1.

Remark 6.4. In Theorem 6.3 we assume Assumtion 6.2, because it is not yet fully
proved. However, Barnet-Lamb et al. [2] proved the “potential automorphy” of
L(Symγ

f , s), which gives a certain functional equation (see [2, Theorem B, Assertion
2]). If the factors appearing in the functional equation are shown to be sufficiently
well-behaved, we can apply the result in [19] to obtain some suitable mean value result
unconditionally, so we can remove Assumtion 6.2 from the statement of Theorem 6.3.

Remark 6.5. In [27], we adopt a more restricted form of local factors for p|N in the
definition of symmetric power L-functions. However, the argument in [27] is valid
without change even if we use the above definition of symmetric power L-functions
in the present paper. Therefore the main result in [27], which is Theorem 4.1 in the
present paper, is also valid as it is.

7. Some general lemmas

We start the proof of theorems stated in the preceding section. In this section we
consider the general situation that ϕ ∈M00 with f (k, n) = 1 for all k and n. Then

zn(θn;ϕ) = −
g(n)∑

k=1

log(1− a(k)n p−σn e2π iθn ). (7.1)
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Put

Rn(X;ϕ) = −
g(n)∑

k=1

log(1− a(k)n X),

and write its Taylor expansion as Rn(X;ϕ) =∑∞
j=1 r j,n X j . Then we have

zn(θn;ϕ) = Rn(p−σn e2π iθn ;ϕ) =
∞∑

j=1

r j,n p− jσ
n e2π i jθn . (7.2)

Let xn(θn;ϕ) = �zn(θn;ϕ) and yn(θn;ϕ) = 
zn(θn;ϕ). Write w = |w|eiτ =
|w| cos τ + i |w| sin τ . Then

〈zn(θn;ϕ),w〉 = |w|gτ,n(θn;ϕ), (7.3)

where
gτ,n(θn;ϕ) = xn(θn;ϕ) cos τ + yn(θn;ϕ) sin τ.

Substituting this into (5.3), we have

Kn(w, ϕ) =
∫ 1

0
exp

(
i |w|gτ,n(θn;ϕ)

)
dθn. (7.4)

Therefore, to evaluate Kn(w, ϕ), the essential point is to analyze the behavior of
gτ,n(θn;ϕ). We prove

Lemma 7.1. Let ϕ ∈ M00. The function gτ,n(θn;ϕ) is a C∞-class function as a
function in θn. Moreover, if n is sufficiently large, and

|r1,n | ≥ C (7.5)

holds with a positive constant C, then for those n, g′′τ,n(θn;ϕ) has exactly two zeros
on the interval [0, 1). The same assertion also holds for g′τ,n(θn;ϕ).
Proof. This lemma is an analogue of [28, Lemma 7.1]. From the definition, we have

r j,n = 1

j

g(n)∑

k=1

(a(k)n ) j . (7.6)

Since ϕ ∈ M00, we find that |r j,n| ≤ g(n)/j ≤ C0/j . Noting this point, we can see
that exactly the same argument as in the proof of [28, Lemma 7.1] can be applied to
our present situation. (The part on g′τ,n(θn;ϕ) is the same as in [28, Remark 7.1].) �

Now we can show the following lemma, which is the analogue of Lemma 5.4 for
ϕ ∈M00.

Lemma 7.2 (The Jessen-Wintner inequality for ϕ). Let ϕ ∈M00, and assume that
n is sufficiently large and (7.5) holds. Then we have

Kn(w, ϕ) = O
(

pσ/2n |w|−1/2 + pσn |w|−1
)
. (7.7)
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Proof. The method of the proof is the same as in [28, Proposition 7.1] (whose idea
goes back to Jessen and Wintner [16]), so we just sketch the idea briefly.

Using (7.2) we have

gτ,n(θn;ϕ) =
∞∑

j=1

|r j,n|p− jσ
n cos(γ j,n + 2π jθn − τ ),

where γ j,n = arg r j,n, and hence

g′τ,n(θn;ϕ) = −2π |r1,n|p−σn sin(γ1,n + 2πθn − τ )+ O(p−2σ
n ),

g′′τ,n(θn;ϕ) = −(2π)2|r1,n |p−σn cos(γ1,n + 2πθn − τ )+ O(p−2σ
n ).

Let θn = θ c
1, θ

c
2 be two solutions of cos(γ1,n + 2πθn − τ ) = 0 (0 ≤ θn < 1). Then,

when n is sufficiently large and (7.5) holds, the two solutions of g′′τ,n(θn;ϕ) = 0 stated
in Lemma 7.1 are close to θ c

1, θ
c
2 . Similarly, the two solutions of g′τ,n(θn;ϕ) = 0 are

close to the two solutions θn = θ s
1, θ

s
2 of sin(γ1,n + 2πθn− τ ) = 0. Then, for each i, j

(1 ≤ i, j ≤ 2), there exists a unique θi j between θ c
i and θ s

j for which

| sin(γ1,n + 2πθn − τ )| = | cos(γ1,n + 2πθn − τ )| = 1/
√

2

holds.
We divide the interval 0 ≤ θn < 1 (mod 1) into four subintervals at the values θi j ,

and divide also the integral (7.4) accordingly.
On two of those subintervals | sin(γ1,n + 2πθn − τ )| ≥ 1/

√
2, which implies that

|g′τ,n(θn;ϕ)| is not close to 0. Therefore the integrals on those subintervals can be
evaluated by the first derivative test. On the other two subintervals |g′′τ,n(θn;ϕ)| is not
close to 0, so the second derivative test works. These evaluations give the conclusion
(7.7). �

If there exist at least five large values of n for which (7.5) holds, then we can apply
Lemma 7.2 to Lemma 5.3 to obtain

Wσ (R;ϕ) =
∫

R
Mσ (z, ϕ)|dz| (7.8)

for any σ > σ0, with an explicitly constructed continuous non-negative function
Mσ (z, ϕ) (the associated M-function). Then, as indicated in Remark 5.2, we can
deduce the formula of the form

lim
T→∞

1

2T

∫ T

−T
�(log ϕ(s + iτ ))dτ =

∫

C

Mσ (z, ϕ)�(z)|dz| (7.9)

in the region σ > σ0, for any test function � as in the statement of Theorem 3.1.
Therefore, to complete the proof of our theorems, the only remaining task is to show
(7.5) for sufficiently many large values of n.
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8. Proof of Theorems 6.1 and 6.3

Now we return to the specific situation of symmetric power L-functions.

Proof of Theorem 6.1. In this case, for any n such that pn � N , we see that g(n) = 3,
and from (7.6) we have

r1,n = α2
f (pn)+ α f (pn)β f (pn)+ β2

f (pn)

= (α f (pn)+ β f (pn))
2 − α f (pn)β f (pn)

= (λ f (pn))
2 − 1. (8.1)

If pn ∈ P f (ε), then |λ f (ε)| >
√

2− ε, so

r1,n > (
√

2− ε)2 − 1 = 1− (2√2ε − ε2),

which is positive if ε is small. Since P f (ε) is a set of positive density, we now obtain
the inequality (7.5) for infinitely many values of n. This completes the proof. �

Proof of Theorem 6.3. In this case, for any n such that pn � N ,

r1,n =
γ∑

h=0

α
γ−h
f (pn)β

h
f (pn).

In particular r1,n is real, and so

r1,n = �r1,n =
γ∑

h=0

cos((γ − 2h)θ f (pn)).

Then it is easy to see that

r1,n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sin((γ + 1)θ f (pn))/ sin θ f (pn) θ f (pn) �= 0, π

γ + 1 θ f (pn) = 0

γ + 1 θ f (pn) = π, γ is even

−γ − 1 θ f (pn) = π, γ is odd

(cf. [35, p.86]), hence
|r1,n | ≥ | sin((γ + 1)θ f (pn))|. (8.2)

Fix a number ξ ∈ (0, π/2), and let η = sin ξ . Then 0 < η < 1. Define the intervals

A( j) =
[

2π j + ξ
γ + 1

,
2π j + π − ξ

γ + 1

]

, B( j) =
[

2π j + π + ξ
γ + 1

,
2π j + 2π − ξ

γ + 1

]

where j is a non-negative integer. If γ is odd, then

| sin((γ + 1)θ f (pn))| ≥ η (8.3)
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if and only if

θ f (pn) ∈ I1 :=
(γ−1)/2⋃

j=0

(A( j) ∪ B( j)) . (8.4)

If γ is even, then (8.3) holds if and only if

θ f (pn) ∈ I2 :=
(γ−2)/2⋃

j=0

(A( j) ∪ B( j))∪ A(γ /2). (8.5)

These observations, (8.2) and (8.3) imply that |r1,n | ≥ η if θ f (pn) ∈ I1 (if γ is odd) or
∈ I2 (if γ is even). Therefore, to prove Theorem 6.3, it is enough to show that the set

{p : prime | θ f (pn) ∈ I�} (� = 1, 2) (8.6)

is of positive density.
Since

∫ b

a
sin2 θdθ = 1

2

(

b − a − 1

2
(sin 2b − sin 2a)

)

,

from (6.9) we have

πI (x)

π(x)
= 1

π

(

b − a − 1

2
(sin 2b − sin 2a)

)

+ O
(
(log x)−1/8+ε) (8.7)

for I = [a, b]. Denote

aA( j) = 2π j + ξ
γ + 1

, bA( j) = 2π j + π − ξ
γ + 1

,

aB( j) = 2π j + π + ξ
γ + 1

, bB( j) = 2π j + 2π − ξ
γ + 1

.

Then from (8.7) we can write

πI� (x)

π(x)
= 1

π
S� + 1

2π
T� + O

(
(log x)−1/8+ε) (� = 1, 2), (8.8)
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where

S1 =
(γ−1)/2∑

j=0

(
(bA( j) − aA( j))+ (bB( j) − aB( j))

)
,

S2 =
(γ−2)/2∑

j=0

(
(bA( j) − aA( j))+ (bB( j) − aB( j))

)+ (
bA(γ /2) − aA(γ /2)

)
,

T1 =
(γ−1)/2∑

j=0

(
(sin(2bA( j))− sin(2aA( j)))+ (sin(2bB( j))− sin(2aB( j)))

)
,

T2 =
(γ−2)/2∑

j=0

(
(sin(2bA( j))− sin(2aA( j)))+ (sin(2bB( j))− sin(2aB( j)))

)

+ (
sin(2bA(γ /2))− sin(2aA(γ /2))

)
.

It is easy to see that
S� = π − 2ξ (� = 1, 2). (8.9)

Next we show that
T� = 0 (� = 1, 2). (8.10)

In fact, we know

(sin(2b�( j))− sin(2a�( j))) = 2 sin
π − 2ξ

γ + 1
cos

4π j + cπ

γ + 1
,

where c = 1 if � = A and c = 3 if � = B. Then

T1 = 2 sin
π − 2ξ

γ + 1

(γ−1)/2∑

j=0

(

cos
4π j + π
γ + 1

+ cos
4π j + 3π

γ + 1

)

= 4 sin
π − 2ξ

γ + 1
cos

π

γ + 1

(γ−1)/2∑

j=0

cos
4π j + 2π

γ + 1
,

and

sin
2π

γ + 1

(γ−1)/2∑

j=0

cos
4π j + 2π

γ + 1
= 1

2

(γ−1)/2∑

j=0

(

sin
4π( j + 1)

γ + 1
− sin

4π j

γ + 1

)

= 1

2
(sin(2π)− sin 0) = 0,

therefore T1 = 0 (note that sin(2π/(γ + 1)) �= 0 because γ ≥ 2). Similarly we find
that

T2 = 4 sin
π − 2ξ

γ + 1
cos

π

γ + 1

(γ−2)/2∑

j=0

cos
4π j + 2π

γ + 1
+ 2 sin

π − 2ξ

γ + 1
cos

π

γ + 1
,
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and the sum on the right-hand side is equal to −1/2, and hence T2 = 0.
From (8.8), (8.9) and (8.10) we obtain

πI�(x)

π(x)
= 1− 2ξ

π
+ O

(
(log x)−1/8+ε) (� = 1, 2). (8.11)

Since ξ < π/2, this implies that the set (8.6) is of positive density in the set of all
primes. This completes the proof. �

Remark 8.1. Actually, to prove Theorem 6.3, it is not necessary to invoke the
quantitative result of Thorner [40]. The above argument, combined with the famous
solution of the Sato-Tate conjecture [2], implies

πI� (x)

π(x)
∼ 1− 2ξ

π
> 0, (8.12)

which is sufficient for our purpose. However we may expect that a quantitative formula
like (8.11) will be useful when we try to develop more detailed study on M-functions.
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[21] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer (1996).
[22] P. Lebacque and A. Zykin, On M-functions associated with modular forms, Moscow

Math. J., 18 (2018) 437–472.
[23] K. Matsumoto, Value-distribution of zeta-functions, in Analytic Number Theory, Proc.

Japanese-French Sympos. held in Tokyo, K. Nagasaka and E. Fouvry (eds.), Lect. Notes
in Math., Springer-Verlag, 1434 (1990) 178–187.

[24] K. Matsumoto, Asymptotic probability measures of zeta-functions of algebraic number
fields, J. Number Theory, 40 (1992) 187–210.

[25] K. Matsumoto, Asymptotic probability measures of Euler products, in Proc. Amalfi Conf.
on Analytic Number Theory, E. Bombieri et al. (eds.), Univ. Salerno, (1992) 295–313.

[26] K. Matsumoto, Liftings and mean value theorems for automorphic L-functions, Proc.
London Math. Soc. (3), 90 (2005) 297–320.

[27] K. Matsumoto and Y. Umegaki, On the value-distribution of the difference between
logarithms of two symmetric power L-functions, Intern. J. Number theory, 14 (2018)
2045–2081.

[28] K. Matsumoto and Y. Umegaki, On the density function for the value-distribution of
automorphic L-functions, J. Number Theory, 198 (2019) 176–199.

[29] M. Mine, On the value-distributions of logarithmic derivatives of Dedekind zeta
functions, preprint, arXiv:1705.07865.

[30] M. Mine, The density function for the value-distribution of Lerch zeta functions and its
applications, Michigan Math. J., to appear, arXiv:1805.11066.

[31] M. Mine, On certain mean values of logarithmic derivatives of L-functions and the
related density functions, Funct. Approx. Comment. Math., 61 (2019) 179–199.

[32] C. J. Moreno and F. Shahidi, The L-functions L(s,Symm(r), π), Canad. Math. Bull., 28
(1985) 405–410.

[33] M. Mourtada and V. K. Murty, Distribution of values of L ′/L(σ, χD), Moscow Math. J.,
15 (2015) 497–509.

[34] M. R. Murty, Oscillations of Fourier coefficients of modular forms, Math. Ann., 262
(1983) 431–446.



On the Value-Distribution of Symmetric Power L-Functions 167

[35] M. R. Murty and V. K. Murty, Non-Vanishing of L-Functions and Applications, Progr.
in Math., 157, Birkhäuser (1997).
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1. Introduction

The Gel’fond-Schneider theorem asserts that if β is an algebraic irrational, and
α �= 0, 1 is algebraic, then αβ is transcendental. A good exposition of it can be
found in the monograph of R. Murty and P. Rath ([3], Chapter 9) where it is derived
from the Lang-Schneider theorem using the differential equation satisfied by the
exponential function. The original proof of Schneider gave another approach by using
the functional equation of the exponential function. We give a proof which is similar to
Schneider’s approach but which seems to be a little different from the usual approach.

I wrote this argument out in 1987 and circulated it to a few people. As pointed out
to me at the time by M. Waldschmidt, the argument can actually be seen as a special
case of Theorem 2.1 of his paper with Gramain and Mignotte [1]. However, for some
technical reasons (such as the location of the zeros of the auxiliary function in a disc
that is growing slowly with respect to other parameters), our approach still seems to be
of interest. At the urging of the editors of this volume, I am presenting the notes here.

Our argument is inspired by an earlier paper by Lang [2]. In that article, Lang was
trying to get information about the degree of the field generated by division points
on an elliptic curve. Combining results of Deuring with those of Serre, we know
that the Galois groups of such fields are as large as they can be (taking into account
endomorphisms) but the proofs involve deep properties of elliptic curves. Lang was
exploring what one could say about these fields of division points using the methods
of transcendence. In particular, he proved that the degree of the field generated by the
division points of order N > 1 grows at least as fast as a constant times N . This of
course falls short of the theorems quoted above which tell us that, up to constants, the

169
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degree should grow like N2 in the complex multiplication case, and like N4 in the
non-complex multiplication case.

The point of this note is to show that if we apply Lang’s approach to the exponential
function, we get the Gel’fond-Schneider theorem as a consequence. We shall prove
the following.

Theorem 1. Let α0, α1 be algebraic numbers that are Q-linearly independent (that is,
α1/α0 �∈ Q). Let t ∈ C\{0}. Then, at least one of etα0 and etα1 is transcendental.

The Gel’fond-Schneider theorem follows by taking t = logα, α0 = 1 and
α1 = β. Conversely, the Theorem follows from Gel’fond-Schneider by noting that if
etα0 is algebraic, then as it is not equal to 0 or 1 (as t �= 0), we have (etα0)α1/α0 is
transcendental.

The strategy of proof is to consider the field

K = Q(α0, α1, etα0, etα1).

If the theorem is false, this is a number field and we can set A = [K : Q]. For each
integer N ≥ 1 and each pair of integers r0, r1, consider also the field

K N,r0,r1 = Q

(

e
t
(

r0α0+r1α1
N

))

.

Denote by dN,r0,r1 its degree over Q and set

dN = max
r0,r1∈Z

dN .r0,r1 .

Then, we see that
dN ≤ AN .

We shall show that in fact
dN � N log N

thereby getting a contradiction.

2. Notation

We introduce some notation that will be used throughout and which can be referred to
as one goes through the argument.

•
R1 = max

σ

(√
2(|ασ0 |2 + |ασ1 |2)1/2, 1

)

as σ runs over Aut(C/Q).
• μ a large constant satisfying

μ > max

(

3,
2

|t| , eR1

)

and (log x)/x ≤ |t| for x ≥ μ.
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• L a free parameter satisfying

L > max

(

(576μ|t|)2, 1

|t|
)

and L/ log L > μ2.
• r = R1 log L
• R = μ(L log L)1/2

• U = 3|t|L R
• S = 1728μ2|t|2L
• C a large integer that is a multiple of the denominators of α0, α1, etα0, etα1 and

an upper bound for all their conjugates
• A constant

c1 = 3 log C

|t| +
2

3|t| +
2

3
C + 192μ2|t|

• c2 a constant larger than 2c1.

3. Lemmas

Lemma 1. There are rational integers pλ0,λ1 , where 0 ≤ λ0, λ1 < L, not all zero,
with

|pλ0,λ1 | < eS

and such that
F(z) =

∑

0≤λ0,λ1<L

pλ0,λ1 zλ0etzλ1

satisfies
|F |r ≤ e−U .

This is a version of Siegel’s lemma due to Waldschmidt [4].

Lemma 2. The denominator of
et( r·a

N ),

where r = (r0, r1) and a = (α0, α1), is

≤ C2+2 max(r0,r1)/N .

Proof. Indeed, write ri = ρi N + λi for i = 0, 1, 0 ≤ λi < N , |ρi | ≤ ri/N . Set

γ = C2et
λ0α0+λ1α1

N .

Then,
γ N = (Cetα0)λ0(Cetα1)λ1C2N−(λ0+λ1)

is an algebraic integer of K . Also, the denominator of

et (ρ0α0+ρ1α1)

is
≤ Cρ0+ρ1 ≤ C2 max(r0,r1)/N . �
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Lemma 3. For every integer

N ∈
(

R

2c2 A log R
,

R

c2 A log R

)

and r = (r0, r1) ∈ Z2 with 0 ≤ r0, r1 < N log N, (r0, N) = (r1, N) = 1, we have

F
(r · a

N

)
= 0.

Proof. We have ∣
∣
∣
r · a
N

∣
∣
∣ ≤ (log N)R1 ≤ R1 log L = r.

Hence, if F(r · a/N) �= 0 we have by Liouville

(
L2eS(C N)L(C N log N)L C3L log N e2|t |C L log N

)−dN ≤
∣
∣
∣F

(r · a
N

)∣
∣
∣ ≤ e−U .

Thus,

dN ≥ R

c1 log N
≥ c2 AN log R

c1 log N
≥ 2AN

which is a contradiction. �

4. Proof of the Theorem

Let M be the least integer larger than R/c2 A log R for which there exists
s = (s0, s1) ∈ Z2 with 0 ≤ s0, s1 < M log M , (s0,M) = (s1,M) = 1 with
F(s · a/M) �= 0. Set

(ρ, θ) =
⎧
⎨

⎩

(r, R) if M < R

(R1 log M, 2R1 log M) if M > R.

In Lemma 3, we showed that F vanishes at the points r · a (where 0 ≤ r0,

r1 < N log N and (r0, N) = (r1, N) = 1) and these are all distinct because of the
Q-linear independence of α0 and α1. Thus, from Lemma 3, we have constructed

≥
∑(

φ(N)

N
N log N

)2

≥ c3 M3(log M)2

zeros of F in |z| = ρ. In the above, the sum ranges over

R

2c2 A log R
< N < M.

Then,

(c1L log M)−dM ≤
∣
∣
∣F

(s · a
M

)∣
∣
∣ ≤ eS L2θ Le|t |θL

(θ/ρ)c3 M3(log M)2
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and so

dM ≥ 2AM
c3

2Ac1

M2(log M) log(θ/ρ)

L
− 1728μ2|t|2 + 2(log L)/L + log θ + |t|θ

c1 log M
.

Suppose first that M < R. Then, we have

M2(log M)(log θ/ρ)

L
�

(
R

c2 A log R

)2 (log R)2

L
� R2

L
� log L � log M.

On the other hand, if M > R, we have

M2(log M)(log θ/ρ)

L
� R2 log M

L
� log M.

Thus, in all cases, we have

M2(log M)(log θ/ρ)

L
� log M.

Moreover,
1728μ2|t|2 + 2(log L)/L + log θ + |t|θ

c1 log M
� M

in all cases. Hence,
dM � M log M

and this is a contradiction as by letting L → ∞, we can make M →∞: the implied
constant depends only on μ, t and R1.
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1. Introduction

The problem of non-vanishing and sign changes of the Fourier coefficients of
modular forms over a number field is an active area of research in number theory. For
modular forms over Q, there had been extensive study of these problems by several
mathematicians (cf. [Mur83, KM14, GKR15]). For modular forms over totally real
number fields, a similar study has been initiated recently in [MT14, KK18].

In §2, we shall recall the definition of Hilbert modular forms, their Fourier
coefficients, and we will introduce some notations.

In §3, we shall study the simultaneous non-vanishing of Fourier coefficients of
distinct primitive forms at powers of prime ideals (cf. Theorem 3.3 in the text).
In [GKP], the authors proved that if f and g are two Hecke eigenforms of integral
weights with a f (n), ag(n) ∈ R, respectively, then for all but finitely many primes p,
the set {m ∈ N | a f (pm)ag(pm) �= 0} has positive density. In [KK18, Theorem 3.1],
the authors extended this result to Hilbert primitive forms over K , by showing that the
set in (3.4) has positive density. In this article, we improve this result by showing that
this density is at least 1

2 , when [K : Q] is odd. In fact, we will show that the density
can either be only 1

2 or 1. The proof of this theorem is completely different from that
of Theorem in loc. cit.. Our proof depends on a generalization of the lemma [KRW07,
Lemma 2.2] or [MM07, Lemma 2.5] to Hilbert modular forms (cf. Proposition 3.1
in the text).

In §4, we shall study the sign change results for Fourier coefficients of primitive
forms over K at powers of prime ideals, where [K : Q] is odd. In Proposition 4.1, for
almost all prime ideals p, we show that the Fourier coefficients at pr (r ∈ N) change
signs infinitely often. In Theorem 4.4, we show that a similar result hold by fixing an
exponent and varying over prime ideals.
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Let a f (n), ag(n) ∈ R be the Fourier coefficients of two non-zero cusp forms
f, g, respectively, of same level but different non-parallel even weights. In [GKR15,
Theorem 1], the authors showed that if a f (1)ag(1) �= 0, then a f (n)ag(n)(n ∈ N)

change signs infinitely many often. In [KK18, Theorem 3.1], the authors extend this
result to Hilbert modular forms. In this article, we have improved the conditions of
theorem in loc. cit., so that it can be applied to a broader class of modular forms.

2. Preliminaries

Let F be a totally real number field of degree n > 1 and let OF denote the integral
closure of Z inside F . In this section, we shall recall the basic definition of Hilbert
modular forms over F and it’s Fourier coefficients for all integral ideals m ⊆ OF (for
more details, see [Gar90, Fre90]).

Let k = (k1, . . . , kn) ∈ Nn. For a non-archimedean place p of F , let Fp denote
the completion of F at p. Let DF denote the absolute different of F . Let a and b be
integral ideals of F , and define a subgroup Kp(a, b) of GL2(Fp) as

Kp(a, b) =
{(

a b
c d

)

∈ GL2(Fp) :
a ∈ Op, b ∈ a−1

p D−1
p ,

c ∈ bpDp, d ∈ Op, |ad − bc|p = 1

}

,

where the subscript p means the p-parts of given ideals. Furthermore, we put

K0(a, b) = SO(2)n ·
∏

p<∞
Kp(a, b) and W (a, b) = GL+2 (R)

n K0(a, b).

In particular, if a = OF , then we simply write Kp(b) := Kp(OF , b), W (b) :=
W (OF , b). Then, we have the following disjoint decomposition of GL2(AF):

GL2(AF) =
h⋃

ν=1

GL2(F)x
−ι
ν W (b), (2.1)

where x−ιν =
(

t−1
ν

1

)
with {tν}hν=1 taken to be a complete set of representatives of the

narrow class group of F . We note that such tν can be chosen so that the infinity part
tν,∞ is 1 for all ν. For each ν, we also put

�ν(b) = GL2(F) ∩ xνW (b)x−1
ν

=
{(

a t−1
ν b

tνc d

)

∈ GL2(F) :
a ∈ Op, b ∈ a−1

p D−1
p ,

c ∈ bpDp, d ∈ Op, |ad − bc|p = 1

}

.

Letψ be a Hecke character of A
×
F whose conductor divides b andψ∞ is of the form

ψ∞(x) = sgn(x∞)k|x∞|iμ,
with μ ∈ Rn and

∑n
j=1μ j = 0. We let Mk(�ν(b), ψb, μ) denote the space of all

functions fν that are holomorphic on hn and at cusps, satisfying

fν ||kγ = ψb(γ ) det γ iμ/2 fν
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for all γ in �ν(b). We note that such a function fν has a Fourier expansion

fν(z) =
∑

ξ∈F

aν(ξ) exp(2π iξ z)

where ξ runs over all the totally positive elements in t−1
ν OF and ξ = 0. A Hilbert

modular form is a cusp form, if for all γ ∈ GL+2 (F), the constant term of fν ||kγ in its
Fourier expansion is 0, and the space of cusp forms with respect to �ν(b) is denoted
by Sk(�ν(b), ψb, μ).

Now, put f := ( f1, . . . , fh) where fν belongs Mk(�ν(b), ψb, μ) for each ν, and
define f to be a function on GL2(AF ) as

f(g) = f(γ x−ιν w) := ψb(w
ι) detwiμ/2∞ ( fν ||kw∞)(ii)

where γ x−ιν w ∈ GL2(F)x−ιν W (b) as in (2.1), and wι := ω0(
tw)ω−1

0 with
ω0 =

(
1−1

)
. The C-vector space generated by such f is denoted as Mk(ψb, μ) =∏

ν Mk(�ν(b), ψb, μ). Furthermore, the space consisting of all f = ( f1, . . . , fh) ∈
Mk(ψb, μ) satisfying

f(sg) = ψ(s)f(g) for any s ∈ A
×
F and x ∈ GL2(AF)

is denoted as Mk(b, ψ). If fν ∈ Sk(�ν(b), ψb, μ) for each ν, then the C-vector space
of such f is denoted by Sk(b, ψ).

Let m be an integral ideal of F and write m = ξ t−1
ν OF with a totally positive

element ξ in F . Then, we define the Fourier coefficients of f as

C(m, f) :=
⎧
⎨

⎩

N(m)
k0
2 aν(ξ)ξ−(k+iμ)/2 if m = ξ t−1

ν OF ⊂ OF

0 if m is not integral
(2.2)

where k0 = max{k1, . . . , kn}.
We let F (resp., K ) to denote a totally real number field (resp., of odd degree). Let P

(resp., P) denote the set of all prime ideals of OF (resp., odd inertia degree). We shall
use the same notations P (resp., P) for prime ideals (resp., odd inertia degree) of OK

as well and it shall be clear from the context. Throughout this article, by a primitive
form f over F of level b, with character χ and weight k, we mean f is a normalized
Hilbert Hecke eigenform in Snew

k (b, χ) (cf. for the theory of new forms, please refer
to [Shi78]).

Observe that, by ramification theory, for any prime p ∈ Z, there exists a prime
ideal p ⊆ OK over p with odd inertia degree. Furthermore, if K is Galois, then every
prime ideal of OK has odd inertia degree.

2.1 Sato-Tate equi-distribution theorem

In this section, we shall state the Sato-Tate equi-distribution theorem for non-CM
primitive forms f (cf. [KKT18, Theorem 3.3] which is a re-formulation of [BGG11,
Corollary 7.17] for f) in a way that shall be useful in our context.



178 Tarun Dalal and Narasimha Kumar

Let f be a primitive form over F of level c, with trivial character and weight 2k.
For any ideal a ⊆ OF , define β(a, f) := C(a,f)

N(a)
2k0−1

2

. By Deligne’s bound for f, for any

prime ideal p � cDF , we have β(p, f) ∈ [−2, 2]. Hence, we can write

β(p, f) = 2 cos θp(f), (2.3)

for some θp(f) ∈ [0, π ]. Now, we shall recall the Sato-Tate equi-distribution theorem
of Barnet-Lamb, Gee, and Geraghty ([BGG11, Corollary 7.17]).

Theorem 2.1. Let f be a non-CM primitive form over F of level c, with trivial
character and weight 2k. Then {θp(f)}p∈P,p�cDF is equi-distributed in [0, π ] with

respect to μST = 2
π sin2θdθ . In other words, for any sub-interval I ⊆ [0, π ], we have

lim
x→∞

#{p ∈ P | p � cDF , N(p) ≤ x, θp(f) ∈ I }
#{p ∈ P | N(p) ≤ x} = μST(I ) = 2

π

∫

I
sin2θdθ (2.4)

i.e., the natural density of S = {p ∈ P | p � cDF , θp(f) ∈ I } is μST(I ).

3. Non-vanishing of Fourier coefficients at prime powers

In this section, we shall prove a result concerning the simultaneous non-vanishing of
Fourier coefficients of primitive forms at prime powers. Before proving this result, we
prove an important proposition, which is a generalization of [KRW07, Lemma 2.2]
or [MM07, Lemma 2.5] to K .

Recall that K is totally real number field of odd degree and P denote the set of all
prime ideals of OK with odd inertia degree. The following proposition holds only for
primes of P. This is because for primes of P\P, in the below proof, (3.2) does not
imply (3.3). In that case, we may not be able to say that the number of such primes
are finite. This is main reason for working over K instead over F .

Proposition 3.1. Let f be a primitive form over K of level c, with character χ and
weight 2k. Then there exists an integer Mf ≥ 1 with N(c) | Mf such that for any
prime p � Mf and for any prime ideal p ∈ P over p, we have either C(p, f) = 0 or
C(pr , f) �= 0 for all r ≥ 1.

Proof. Let p be a prime number such that p � N(c). Let p ∈ P be a prime ideal of
OK over p and p � c. If C(p, f) = 0, then there is nothing prove. If C(p, f) �= 0, then
we need to show that C(pr , f) �= 0 for all r ≥ 2, except for finitely many prime ideals
p ∈ P.

Suppose that C(p, f) �= 0 but C(pr , f) = 0 for some r ≥ 2. Since f is a primitive
form, then by Hecke relations, we have

C(pm+1, f) = C(p, f)C(pm, f)− χ(p)N(p)2k0−1C(pm−1, f).

These relations can be re-interpreted as

∞∑

r=0

C(pr , f)Xr = 1

1− C(p, f)X + χ(p)N(p)2k0−1 X2
. (3.1)
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Suppose that

1− C(p, f)X + χ(p)N(p)2k0−1 X2 = (1− α(p)X)(1− β(p)X).
By comparing the coefficients, we get that

α(p)+ β(p) = C(p, f) and α(p)β(p) = χ(p)N(p)2k0−1 �= 0,

since p � c and hence χ(p) �= 0. If α(p) = β(p), then

C(pr , f) = (r + 1)α(p)r �= 0,

which cannot happen for any r ≥ 2. So, α(p) cannot be equal to β(p). Then by
induction, for any r ≥ 2, we have the following

C(pr , f) = α(p)r+1 − β(p)r+1

α(p)− β(p) .

In this case, we have

C(pr , f) = 0 if and only if

(
α(p)

β(p)

)r+1

= 1,

which implies that the ratio α(p)
β(p) is a root of unity. Since C(p, f) �= 0, we get that

α(p) = ζβ(p) where ζ is a root of unity and ζ �= −1 . By the product relation, we get
that α(p)2 = ζχ(p)N(p)2k0−1, hence α(p) = ±γ N(p)(2k0−1)/2, where γ 2 = ζχ(p).
Therefore,

C(p, f) = (1+ ζ−1)α(p) = ±γ (1+ ζ−1)N(p)(2k0−1)/2 �= 0.

In particular, Q(γ (1+ ζ−1)N(p)
2k0−1

2 ) ⊆ Q(f), where Q(f) is the field generated by
{C(m, f)}m⊆OK and by the values of the character χ . Since p ∈ P, N(p) = p f , where
f ∈ N odd. Hence, we have

Q(γ (1+ ζ−1)p
f (2k0−1)

2 ) ⊆ Q(f). (3.2)

Since 2k0 − 1, f are odd, we have that

Q(γ (1+ ζ−1)
√

p) ⊆ Q(f). (3.3)

By [Shi78, Proposition 2.8], the field Q(f) is a number field. Hence, the number of
such primes p are finite. Take Mf to be the product of all such primes p and N(c).
Thus, for any prime p � Mf and for any prime ideal p ∈ P over p, we have either
C(p, f) = 0 or C(pr , f) �= 0 for all r ≥ 1. �

If K is Galois over Q, then the above proposition can be re-stated as:

Lemma 3.2. Let f be as in Proposition 3.1. If K is Galois over Q, then there exists
an integer Mf ≥ 1 with N(c) | Mf such that for any prime p � Mf and for any prime
ideal p ∈ P over p, we have either C(p, f) = 0 or C(pr , f) �= 0 for all r ≥ 1.
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Now, we are in a position to state our main result of this section, which improves the
result [KK18, Theorem 3.2]. Let k = (k1, . . . , kn) ∈ Nn and l = (l1, . . . , ln) ∈ Nn.

Theorem 3.3. Let f and g be two primitive forms over K and of levels c1, c2, with
characters χ1 and χ2 and weights 2k, 2l, respectively. For any prime p � Mf Mg, for
any prime ideal p ∈ P over p, the set

Ap := {m ∈ N|C(pm, f)C(pm, g) �= 0} (3.4)

contains 2N, where Mf and Mg are as in Proposition 3.1 for f, g, respectively.
Moreover, the natural density of the set Ap is either 1

2 or 1.

Proof. For any prime p � Mf Mg, let p ∈ P be a prime ideal over p. If C(p, f)
C(p, g) �= 0, then by Proposition 3.1, we have that

{m ∈ N|C(pm, f)C(pm, g) �= 0} = N.

In this case, the natural density of Ap is 1.
Suppose at least one of C(p, f) or C(p, g) is zero, say C(p, f) = 0. By the Hecke

relations for the primitive form f

C(pm, f) = −χ1(p)N(p)
2k0−1C(pm−2, f), (3.5)

where χ1(p) �= 0, since p � c1. Hence, we see that the vanishing or non-vanishing
of C(pm, f) depends only on m (mod 2). Therefore, C(p2m+1, f) = 0 (resp.,
C(p2m, f) �= 0) as C(p, f) = 0 (resp., C(p2, f) �= 0) for all m ≥ 1. Hence, we have
that

{m ∈ N | C(pm, f) �= 0} = 2N.

Arguing similarly for the primitive form g, we see that the set {m ∈ N|C(pm, g) �= 0}
is either N or 2N depends on whether C(p, g) �= 0 or C(p, g) = 0, respectively. So
any of these cases, we get that

{m ∈ N|C(pm, f)C(pm, g) �= 0} = 2N.

In this case, the natural density of Ap is 1
2 . This proves the Theorem. �

In the following proposition, we answer how often the set Ap is N, when p varies
over P.

Proposition 3.4. Let f and g be same as in Theorem 3.3. If f, g are non-CM
eigenforms, then there exists a set S ⊆ P with natural density is 0 such that

Ap = {m ∈ N | C(pm, f)C(pm, g) �= 0} = N (3.6)

for all prime ideals p ∈ P outside of S.

Proof. Define the set S′ = {p ∈ P | C(p, f)C(p, g) = 0}. Clearly, we have

{p ∈ P | C(p, f) = 0} ⊆ S′ ⊆ {p ∈ P | C(p, f) = 0} ∪ {p ∈ P | C(p, g) = 0}.
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By Theorem 2.1, the natural density of {p ∈ P | C(p, f) = 0} is 0 and hence the
natural density of {p ∈ P | C(p, f) = 0} is 0. Similarly, for the eigenform g as
well. Hence, the natural density of S′ is 0. Therefore, the natural density of the set
S = S′ ∪ {p ∈ P | p | p and p | Mf Mg} is 0. For any p �∈ S, by Lemma 3.1, we have
C(pm, f)C(pm, g) �= 0 for all m ≥ 1. �

We remark that if we assume K is Galois in the above result, then (3.6) holds for
density 1 set of primes in P (because, in this case P = P).

4. Sign changes of Hilbert modular forms

In this section, we shall study the sign change results for the Fourier coefficients of
primitive forms, and later we study the simultaneous sign changes for the Fourier
coefficients of two non-zero Hilbert modular forms of different integral weights.

4.1 Sign changes

In [MT14, Theorem 1.1], the authors show that a non-zero Hilbert cusp form with
real Fourier coefficients change signs infinitely often. In the next proposition, for
primitive forms, we show that for almost all the primes p ∈ P, the Fourier coefficients
{C(pr , f)}r∈N change signs infinitely often.

Proposition 4.1. Let f be a primitive form over K of level c, trivial character and
weight 2k. Then, for all but finitely many p ∈ P, the Fourier coefficients {C(pr , f)}r∈N
change signs infinitely often.

Proof. Let p ∈ P be a prime ideal such that C(pr , f) ≥ 0 for all r � 0 (a similar
argument holds in the other case as well). Since f is primitive, by Hecke relations, we
have ∞∑

r=0

C(pr , f)Xr = (1− α(p)X)−1(1− β(p)X)−1, (4.1)

where
1− C(p, f)X + N(p)2k0−1 X2 = (1− α(p)X)(1− β(p)X).

Comparing the coefficients we have

α(p)+ β(p) = C(p, f) and α(p)β(p) = N(p)2k0−1,

where

α(p), β(p) = C(p, f)±√
C(p, f)2 − 4N(p)2k0−1

2
. (4.2)

For s ∈ C, replacing X by N(p)−s in (4.1), we get that

∞∑

r=0

C(pr , f)N(p)−sr = (1− α(p)N(p)−s)−1(1− β(p)N(p)−s )−1. (4.3)
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The above Dirichlet series converges for Re(s) � 0 and the coefficients are
non-negative except for finitely many terms. By Landau’s theorem for Dirichlet series
with non-negative terms, we get the series (4.3) is either converges everywhere or it
has a singularity at the real point of its abscissa of convergence. The series has a pole
at s ∈ C for which N(p)s = α(p) or N(p)s = β(p) holds, hence the first case is
not possible. Then the only possibility is that the series has a singularity at the real
point of its abscissa of convergence. In particular, one of (and hence both of) α(p) or
β(p) must be real. Hence, we get that C(p, f)2 ≥ 4N(p)2k0−1. However, by Deligne’s
bound for f, we have

C(p, f)2 ≤ 4N(p)2k0−1. (4.4)

Therefore,

C(p, f) = ±2N(p)
2k0−1

2 ∈ Q(f). (4.5)

Since p ∈ P, by (4.5), we get
√

p ∈ Q(f), which can only happen for finitely many
primes p. This proves the proposition. �

In [KM14], Kohnen and Martin remarked that the sign change results for the Fourier
coefficients can also be proved by using sign changes of sin(θ). We elaborate this
remark and reprove the above result. For this, we need to recall the following lemma
(cf. by [KK18, Proposition 5.1] for a proof).

Lemma 4.2. Let f be a primitive form over F of level c, with trivial character and
weight 2k. For any prime ideal p � cDF , let θp(f) ∈ [0, π ] be defined as in (2.3). Then,
for any m ≥ 1, we have

β(pm, f) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)m(m + 1) if θp(f) = π,
m + 1 if θp(f) = 0,

sin((m+1)θp (f))
sin θp (f)

if 0 < θp(f) < π.

(4.6)

Now, we shall give another proof of Proposition 4.1.

Proof. For any p ∈ P, if θp(f) = 0 or π , then C(p, f) = ±2N(p)
2k0−1

2 ∈ Q(f), which
can happen only for finitely many p ∈ P. So, without loss of generality, we can assume
that 0 < θp(f) < π , hence sin(θp(f)) > 0. By (4.6), we have

C(pm, f) ≷ 0 ⇐⇒ sin 2π(m + 1)
θp(f)
2π

≷ 0.

Let x = θp (f)
2π . For any j ∈ N, the lengths of the intervals

( 2 j
2x ,

(2 j+1)
2x

)
and

( (2 j−1)
2x , 2 j

2x

)

are bigger than 1, as 1
2x > 1. Hence, there exists n j ,m j ∈ Z such that n j + 1 ∈

( 2 j
2x ,

2 j+1
2x

)
and m j + 1 ∈ (2 j−1

2x , 2 j
2x

)
. Therefore, we have sin

(
(n j + 1)θp(f)

)
> 0 and

sin((m j + 1)θp(f)) < 0. This completes the proof. �

In the above proposition, for a prime p ∈ P, we have studied the sign changes for
{C(pr , f)}r∈N. Now, for a fixed r ∈ N, we are interested in studying the sign changes
for {C(pr , f)}p∈P.
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For primitive forms over Q, this question has been studied in [MKV18, Theo-
rem 1.1]. In fact, they have computed the natural densities of these sets depending on
r is even or odd. In this next theorem, we shall show that a similar result holds for
primitive forms over F , essentially by following the same approach. So, we shall state
the theorem and sketch a proof of it. To state it, we shall need the notion of natural
density for a subset of prime ideals.

Definition 4.3. Let F be a number field and S ⊆ P be a subset of prime ideals of OF .
The natural density of S defined as

d(S) = lim
x→∞

#{p ∈ S | (p) ≤ x}
#{p ∈ P | (p) ≤ x} ,

if the limit exists.

Theorem 4.4. Let f be a non-CM primitive form over F of level c, with trivial
character and weight 2k. For any m ≥ 1, we define

P(m)≷0 = {p ∈ P | p � cDF ,C(pm, f) ≷ 0}.

(1) If m ≡ 1 (mod 2), then

d(P(m)>0) = d(P(m)<0) = 1

2
.

(2) If m ≡ 0 (mod 2), then

d(P(m)>0) = m + 2

2(m + 1)
− 1

2π
tan

(
π

m + 1

)

, and

d(P(m)<0) = m

2(m + 1)
+ 1

2π
tan

(
π

m + 1

)

.

In particular, then for any m ∈ N, the sequence {C(pm, f)}p∈P changes sign infinitely
often.

Proof. By Theorem 2.1, the natural density of T = {p ∈ P | θp(f) = 0, π} ∪ {p ∈ P |
p | cDF } is zero. By (4.6), we have the following equality

P(m)≷0 = {p ∈ P | p �∈ T , sin((m + 1)θp(f)) ≷ 0}.
If m ≡ 0 (mod 2), then

sin((m + 1)θp(f)) > 0⇔ θp(f) ∈ S :=
m
2⋃

j=0

(
2 jπ

m + 1
,
(2 j + 1)π

m + 1

)

,

and

sin((m + 1)θp(f)) < 0⇔ θp(f) ∈
m
2⋃

j=1

(
(2 j − 1)π

m + 1
,

2 jπ

m + 1

)

.
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By Theorem 2.1, the density of P(m)>0 exists and d(P(m)>0) = μST(S), where
μST(S) = 2

π

∫
S sin2tdt . The explicit calculation of μST(S) is exactly the same as that

of [MKV18, Theorem 1.1]. Again by Theorem 2.1, we see that the natural density of
{p ∈ P | p � cDF ,C(pm, f) = 0} is 0, hence we have

d(P(m)<0) = 1− d(P(m)>0).

In the case of m ≡ 1 (mod 2), a similar calculation in loc.cit. works as well. �

4.2 Simultaneous sign changes

In [KK18, Theorem 3.1], the authors proved that, if C(OF , f)C(OF , g) �= 0, then
there exists infinitely many integral ideals such that the product of the Fourier
coefficients of f and g is positive (resp., negative). Now, we shall state the main
theorem of this section.

Theorem 4.5. Let f and g be non-zero Hilbert cusp forms over F of level c, trivial
character and different non-parallel even weights k, l, respectively. For each ideal
m ⊆ OF , we assume that C(m, f) and C(m, g) are real numbers. Suppose that
for every ideal n ⊆ OF , there exists an ideal r ⊆ OF such that (n, r) = 1 such
that C(r, f)C(r, g) �= 0. Then there exist infinitely many ideals m ⊆ OF such
that C(m, f)C(m, g) > 0 and infinitely many ideals m ⊆ OF such that C(m, f)
C(m, g) < 0.

Remark 4.6. In the above theorem, the condition of simultaneous non-vanishing of
Fourier coefficients is required only to ensure that the L-function in (4.9) is non-zero,
otherwise there is no other reason for this assumption.

The main idea in the proof of Theorem 4.5 comes from [KM18, Theorem 1.5],
which mainly uses the following theorem of Pribitkin [Pri08].

Theorem 4.7. Let F(s) = ∑∞
n=1 ane−sλn be a non-trivial general Dirichlet series

which converges somewhere, where the sequence {an}∞n=1 is complex and the exponent
sequence {λn}∞n=1 is real and strictly increasing to∞. If the function F is holomorphic
on the whole real line and has infinitely many real zeros, then there exist infinitely
many n ∈ N such that an > 0 (resp., an < 0).

Before we proceed to prove Theorem 4.5, we need the following propositions to
construct new Hilbert modular forms out of the existing modular form with some
prescribed vanishing of Fourier coefficients at certain ideals. We recall the following
proposition, which is a melange of [Shi78, Proposition 2.3] and [Pan91, Page 124].

Proposition 4.8. For any integral ideal q ⊆ OF and every f ∈ Mk(c, ψ), there exists
a unique element f|q of Mk(qc, ψ) such that

C(m, f|q) = C(q−1m, f),

and there exists an unique element f|U (q) of Mk(qc, ψ) such that

C(m, f|U (q)) = C(qm, f).
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We now recall the prove the following important proposition (cf. [KK18, Propo-
sition 4.5] for a proof).

Proposition 4.9. Let f ∈ Sk(c, ψ) and q be an integral ideal of OF . Then
g = f− (f|U (q))|q is a Hilbert cusp form of weight k. Further, it has the property that
C(mq, g) = 0 and C(m, g) = C(m, f), if (m, q) = 1.

Now, we are ready to prove Theorem 4.5.

Proof. First, we shall show that there exist infinitely many m ⊆ OF such that

C(m, f)C(m, g) < 0. (4.7)

A similar proof works for the other case as well, by replacing f by −f. If (4.7) is not
true, then there exist an ideal m′ ⊆ OF such that

C(m, f)C(m, g) ≥ 0 (4.8)

for all m ⊆ OF with N(m) ≥ N(m′). Set n := ∏
N(p)≤N(m′) p, where p are prime

ideals of OF .
Let f1 := f − (f|U (n))|n and g1 = g − (g|U (n))|n be two Hilbert modular cusp

forms obtained from f and g respectively (cf. Proposition 4.9). Clearly, f1 and g1 are
also Hilbert cusp forms of even weights k and l respectively, and of level c1. We just
say that the level is c1, because as such we do not need the explicit level in the further
calculations.

For s ∈ C with Re(s) � 1, the Rankin-Selberg L-function of f1 and g1 is defined
by

Rf1,g1(s) :=
∑

m⊆OF ,(m,n)=1

C(m, f)C(m, g)
N(m)s

. (4.9)

In above summation C(m, f)C(m, g) ≥ 0, since, if N(m) ≤ N(m′) then m =∏
pi |n p

ei
i implies (m, n) �= 1. The Rankin-Selberg L-function R f1,g1(s) is a non-zero

function since there exists m with (m, n) = 1 such that C(m, f)C(m, g) �= 0,
by hypothesis.

For Re(s)� 1, we set

L f1,g1(s) := ζ c1
F (2s − (k0 + l0)+ 2)Rf1,g1(s),

where ζ c1
F (s) =

∏
p|c1,p:prime(1 − N(p)−s )ζF(s), where ζF (s) =∑

m⊆OF
N(m)−s is

Dedekind zeta function of F . By the Euler expansion of Dedekind zeta function of F ,
we get that

ζ c1
F (s) =

∏

p|c1,p:prime

(1− N(p)−s )
∏

p:prime

(1− N(p)−s)−1

=
∑

m⊆OF ,(m,c1)=1

1

N(m)s
=
∞∑

n=1

an(c1)

ns
,
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where an(c1) is the number of integral ideals of norm n that are co-prime to c1. Hence,
we can write

L f1,g1(s) =
∞∑

n=1

an(c1)nk0+l0−2

n2s

∑

m⊆OF ,(m,n)=1

C(m, f)C(m, g)
N(m)s

.

Now, we can re-write

L f1,g1(s) =
∞∑

m=1

b
c1
m (f1, g1)

ms
=
∞∑

m=1

bc1
m (f1, g1)e

−s log m,

where

bc1
m (f1, g1) =

∑

n2|m

⎛

⎝an(c1)n
k0+l0−2

∑

(m,n)=1,N(m)=m/n2

C(m, f)C(m, g)

⎞

⎠ .

Define, for any j , k ′j := k0 − k j , and similarly, define l ′j . Now, look at the complete
L-function, defined by the product

�f1,g1(s) =
n∏

j=1

�

(

s + 1+ k j − l j − k0 − l0
2

)

�

(

s − k ′j + l ′j
2

)

L f1,g1(s)

can be continued to a holomorphic function on the whole plane, since the weights are
different (cf. [Shi78, Proposition 4.13]). As the �-function is extended by analytic
continuation to all complex numbers except the non-positive integers, where the
function has simple poles, we get that that function L f1,g1(s) is also entire and has
infinitely many real zeros because the �-factors have poles at non-positive integers.

By Landau’s Theorem for Dirichlet series with non-negative coefficients, it follows
that the Dirichlet series L f1,g1(s) converges everywhere. By Theorem 4.7, there exist
infinitely many m ∈ N such that bc1

m (f1, g1) > 0 and there exist infinitely many m ∈ N

such that bc1
m (f1, g1) < 0. This is a contradiction to the fact bc1

m (f1, g1) ≥ 0 for all m
(this is because, by (4.8), C(m, f)C(m, g) ≥ 0 for all (m, n) = 1). This completes the
proof of Theorem 4.5. �

In the following proposition, we compute the natural density of n ∈ N such that
the product C(pn, f)C(pn, g) have the same sign (resp., opposite sign). For primitive
forms over Q, this a result due to Amri (cf. [Amr18, Theorem 1.1]).

Proposition 4.10. Let f, g be two distinct non-CM primitive forms over F of levels
c1, c2, with trivial characters, and weights 2k, 2l, respectively. For any prime ideal
p ∈ P with p � c1c2DF, let θp(f), θp(g) ∈ [0, π ] be defined as in (2.3). Then, for a

natural density 1 set of primes p ∈ P, the linear independence of 1, θp (f)2π ,
θp (g)

2π over
Q implies

lim
x→∞

#{n ≤ x : C(pn, f)C(pn, g) ≷ 0}
x

= 1

2
.
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Proof. By Theorem 2.1, the natural density p ∈ P such that θp(f), θp(g) ∈ {0, π}
is zero. Let p ∈ P be a prime ideal such that θp(f), θp(g) ∈ (0, π). If 1, θp(f)2π ,

θp (g)
2π

are linearly independent over Q, the sequence {(n θp(f)2π , n θp(g)2π )}n∈N is uniformly
distributed (mod 1) in R2 (cf. [KN74, Theorem 6.3]). Now, the rest of the proof is
similar to that of [Amr18, Theorem 1.1]. �

In the above result, instead of F , if we work over K , then one can show the same
result holds for all but finitely many primes p ∈ P, instead of density 1 set of primes
p ∈ P. In this case, we can even drop the assumption on f, g being non-CM.
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1. Early steps and developments

The first example of transcendental numbers was given by Joseph Liouville in 1844,
then developed in 1851 [13]. The transcendency is proved with the help of very good
approximations by rational numbers.

An algebraic number cannot have too good rational approximations. Let α ∈ Q∩R
and P its minimal polynomial in Z[X ], then Liouville showed

∣
∣
∣
∣α −

p

q

∣
∣
∣
∣ ≥

1

|P ′(α)|(2q)d
◦P

for q ≥ max
P(α′)=0
α �=α′

|α − α′|−1 and
p

q
�= α. (1)

The rational approximations of a real number are encoded in its continued fraction
expansion. For example, it is an exercise, with the so-called folding lemma [15],
to show that the continued fraction of the number ξ =∑∞

�=1 10−�! is given as follow.
For a1, . . . , ak and c integers, define the transformation

ρc(a1, . . . , ak) = a1, . . . , ak, c − 1, 1, ak − 1, ak−1, . . . , a1.

Then

ξ =
[

0, lim
�→∞ρ10(�−1)�! ◦ · · · ◦ ρ1072 ◦ ρ1012 ◦ ρ102(9, 11)

]

= [0, 9, 11, 99, 1, 10, 9, 999999999999, 1, 8, 10, 1, 99, 11, 9, 9 . . . . . . . . . 9︸ ︷︷ ︸
72 9′s

, 1, . . . ].

∗The author thanks heartily the referee, who suggested many additions and corrections which improved the text
much.
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The big partial quotients spot the very good approximations, some of them coming
just from truncating the series. If ξ were algebraic, these very good approximations
would contradict (1).

1.1 a) Roth and the subspace theorem

Liouville inequality has been improved by several authors (notably Axel Thue, Carl
Ludwig Siegel) till Klaus Friedrich Roth established in 1955 that for any positive real
number ε > 0 there exists a positive real number c(α, ε) > 0 satisfying:

∣
∣
∣
∣α −

p

q

∣
∣
∣
∣ ≥

c(α, ε)

q2+ε .

This was generalised in 1972 by Wolfgang Schmidt, see [23], to higher dimension
with the so called subspace theorem, which turned to be incredibly useful in all kind
of applications, see for example [30] for some of these to Diophantine equations.

However, a caveat in Roth theorem is that the real c(α, ε) cannot be in general
effectively computed or uniformly bounded in terms of α (running, for example, over
all the algebraic numbers of bounded degrees).

1.2 b) A method for transcendence

Many numbers (in particular the ones we are interested in, like e or π ) cannot be
distinguished from algebraic numbers by their rational approximation. This may
happen because we don’t know enough specific properties of the continued fraction
expansion of algebraic numbers, but this may be as well due to the fact that there are
not much of them.

Charles Hermite [7] devised in 1873 a method for proving the transcendency
of e, based on approximations by algebraic numbers, rather than rational ones.
This method was taken up by Ferdinand von Lindemann [12] in 1882 who proved
the transcendency of π (settling for good that squaring the circle is impossible).
Combining authors and results we now speak of the Hermite-Lindemann theorem
which states that: for any nonzero algebraic number α its exponential eα is a
transcendental number, i.e. eα /∈ Q. The transcendency of e follows with α = 1 and
that of π with α = iπ .

Since then, classical transcendence theory aims at showing that complex numbers
that have no “good” reason to be algebraic are indeed transcendental or, more
generally, to determine the algebraic relations among several given numbers. In this
context, “good” reasons are mainly given by geometry, often through the action of an
algebraic group.

2. Algebraic independence

Lindemann asserted more than a transcendence result, but proofs had to be completed
by Karl Weierstrass [29] in 1885 in order to state: for α1, . . . , αn algebraic numbers,
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linearly independent over Q, the numbers eα1, . . . , eαn are algebraically independent
over Q (i.e. do not satisfy a polynomial equation with coefficients in Q or Q).

In 1960 Stephen Schanuel proposed a beautiful conjecture, which is supposed
to contain all the “reasonable” statements that can be made on the value of the
exponential function: let x1, . . . , xn be complex numbers, linearly independent
over Q, then at least n of the numbers x1, . . . , xn, ex1 , . . . , exn are algebraically
independent over Q. This conjecture is wide open, except for the case of algebraic
numbers, which is Lindemann-Weierstrass theorem, and the case n = 1 which follows
from Hermite-Lindemann theorem.

2.1 a) The four exponentials conjecture

However, it is less straightforward to deduce from Schanuel conjecture the following:
given four nonzero complex numbers x1, x2, y1, y2 such that x2/x1 and y2/y1 are
irrational numbers, then at least one of the four numbers exi y j , 1 ≤ i, j ≤ 2 is
transcendental. This question goes back to one by Leonidas Alaoglu and Paul Erdös
in 1944: is the quotient of two consecutive colossally abundant numbers1 a prime or
not, which can be reduced to a special case of the four exponentials problem.

Serge Lang in 1966 and Kanakanahalli Ramachandra in 1968 proved independently
the six exponentials theorem (where one takes two x’s and three y’s Q-linearly
independent, for the same conclusion), see [27, Chapter 1, §3]. But this latter result,
the relevant special case of which was already certified by Siegel, only implies that
the quotient of two consecutive colossally abundant numbers is a prime or the product
of two distinct primes.

2.2 b) Baker theorem

In 1966 Alan Baker, see [2, Chapter 2], proved the following first small step dealing
with the case of logarithm of algebraic numbers: if ex1 , . . . , exn are algebraic numbers
then x1, . . . , xn are linearly independent over Q if and only if they are linearly
independent over Q.

But the real strength of this result is in the fact that it allows to give explicit lower
bounds for linear forms in logarithms of algebraic numbers, precise enough, whereas
one reminds that Roth and the subspace theorem are ineffective. This was already
pointed by Alexander Osipovich Gel’fond with two logarithms and then developed by
Alan Baker and many authors, see [2, Chapter 3] or/and [27, Chapter 10, §4].

2.3 c) Commutative algebraic groups and motives

Following a remark of Pierre Cartier, Lang [11] was the first to develop systematically
transcendence theory in the frame of commutative algebraic groups. For example,

1colossally abundant numbers, first studied by Srinivasa Ramanujan, are the positive numbers n ∈ N× such that,
for some ε > 0, one has σ(n)

n1+ε ≥ σ(m)
m1+ε if m ≤ n and σ(n)

n1+ε >
σ(m)
m1+ε if m > n, where σ(n) := ∑

�|n � and

m ∈ N×.
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this leads to the following abelian generalisation of Schanuel conjecture: let A be an
abelian variety defined over Q and u a point in the tangent space of A(C), then the
transcendence degree of the field generated by the coordinates of u and expA(u) is
at least the dimension of the smallest algebraic subgroup of A containing expA(u).
One may even consider abelian varieties defined over any subfield K of C, but then
this is the field generated over K by the coordinates of u and expA(u) that should
have transcendence degree (over Q) at least the dimension of the smallest algebraic
subgroup of A containing expA(u).

More generally, a conjecture of Alexandre Grothendieck [10] (see [11, Chap-
ter IV] for the precise statement) asserts that the transcendence degree of the field
generated by the periods of a smooth projective variety defined over Q is equal to
the dimension of its motivic Galois group. Extending this, Yves André has casted a
beautiful conjecture: let K be a subfield of C. If M is a 1-motive defined over K , then
the transcendence degree over Q of the field generated over K by the periods of M
is at least the dimension of the Mumford-Tate group of M. It encompasses a lot of
informations on the algebraic relations between periods, see for example [3] and [1].
As shown recently by Grégory Vallée [26, Théorème 2], Yves André’s conjecture
implies the above abelian Schanuel conjecture.

3. Three methods

3.1 a) E-functions

In 1929 Siegel introduced the notion of E-function (modeled on the exponential
function): f (z) = ∑∞

k=0
ak
k! zk , ak ∈ Q, h(a0, . . . , ak) = O(k) for all k (actually,

Siegel required a slightly weaker condition) and f satisfies f (m)(z) +
rm−1(z) f (m−1)(z)+ · · · + r0(z) f (z) = 0 with ri (z) ∈ Q(z). Beyond the exponential
function, Bessel functions are examples of E-functions.

Siegel generalised the Lindemann-Weierstrass theorem to this class of functions,
however under some kind of irreducibility condition on the differential operator of
minimal order killing the function. Andrei Borisovich Shidlovsky [22] was able to
remove this extra condition in 1956, thus proving: let f1, . . . , fm be E-functions
satisfying ⎛

⎜
⎝

f ′1(z)
...

f ′m(z)

⎞

⎟
⎠ = A(z)

⎛

⎜
⎝

f1(z)
...

fm(z)

⎞

⎟
⎠

with A(z) an m×m matrix with entries in Q(z). If α ∈ Q
×

is not a singularity of A(z),
then the transcendence degree of the field generated by the values f1(α), . . . , fm(α)

over Q is equal to the transcendence degree of the field generated by the functions
themselves over Q[z]. It is a feature of this method to consider only values at algebraic
points.

Yuri Valentinovich Nesterenko and Shidlovsky proved further in 1996 that
for all α ∈ Q

×
except finitely many, the algebraic relations over Q between
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f1(α), . . . , fm(α) comes from specialisation of an algebraic relation over Q(z)
between the functions f1(z), . . . , fm(z). However, they had no control on the
exceptional set itself. They could effectively construct a larger set containing it, but
not determine it exactly. Ten years later, in 2006, Frits Beukers [4] showed that the
exceptional set is actually reduced to the singularity of A(z).

The final task is to determine a basis of algebraic relations between the functions,
to this end differential Galois theory is very useful.

3.2 b) Mahler functions

Here we consider the field Q(z) endowed with the endomorphism σ : z �→ zq , where
q ≥ 2 is an integer, or more generally z �→ r(z) ∈ Q(z). A Mahler function is a
series f (z) ∈ Q[[z]] satisfying a functional equation σm( f )+ pm−1σ

m−1( f )+· · ·+
p0 f = 0, pi ∈ Q(z). The first and typical example of Mahler function is the
Fredholm series f (z) = ∑∞

�=0 z2� , which satisfies f (z2) = f (z) − z hence f (z4) −
(z + 1) f (z2) + z f (z) = 0. Other examples are given by generating functions of
automatic sequences, Böttcher functions, . . .

In 1930 Kurt Mahler proved that for functions f1(z), . . . , fm(z) satisfying a system
of functional equations

⎛

⎜
⎝

f1(zq)
...

fm(zq)

⎞

⎟
⎠ = A

⎛

⎜
⎝

f1(z)
...

fm(z)

⎞

⎟
⎠+ B(z)

with A an m×m matrix, non-degenerate, with entries in Q and B(z) a column vector
with components in Q(z), the transcendence degree of the field generated over Q by
their values at a point α ∈ Q

×
which is not a pole of B(zqk

) for all k ∈ N, is equal
to the transcendence degree of the field generated by the functions over Q(z). In fact,
Mahler dealt more generally with functions of several analytic variables, see [14].

It was much later, in 1996, that Kumiko Nishioka [17, Theorem 4.2.1] extended this
result to systems with entries of the matrix A in Q(z). The condition on the algebraic
point α is now: no power αqk

, k ∈ N , can be a pole of A(z) or B(z). But the method
also allows to consider values at non algebraic points.

Furthermore, assume that the functions are analytic in a disc of some radius ρ
centred at the origin, then for any α ∈ Q

×
in this disc of convergence which is neither

a singularity of A(z) nor of B(z), the algebraic relations over Q between the values
f1(α), . . . , fm(α) come from specialisation of algebraic relations over Q[z] between
the functions f1(z), . . . , fm(z). Similarly to the case of E-functions, Galois theory
of systems of functional equations is very useful in order to determine the algebraic
relations between the functions, see for example [6].

Paul-Georg Becker extended Mahler method for transcendence to algebraic
functional equations, rather than linear or rational ones, while Becker, Thomas Töpfer
and Evgeniy Zorin extended algebraic independence results to rational transformation
of the variable.
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Mahler himself observed that his method could not be applied to the modular
function J (z) = 1

z + 744 + . . . . However, in 1996 Katia Barré-Siriex, Guy Diaz,
François Gramain and Georges Philibert were able to overcome the difficulty
pointed out by Mahler (and several authors after him). They proved the so-called
Mahler-Manin conjecture: for ξ a nonzero complex or p-adic number of absolute
value < 1 one of the two numbers ξ and J (ξ) is transcendental.

Stepping on this breakthrough, Nesterenko addressed a question of Daniel Bertrand
and obtained a multiplicity estimate for polynomials in z and the Eisenstein series

E2(z), E4(z) and E6(z), where E2k(z) = 1 + γk
∑∞

n=1

(∑
�|n �2k−1

)
zn , γ1 = −24,

γ2 = 240 and γ3 = −504, see [16, Chapter 3]. Recall that with these notations

J (z) = 1728E4(z)3

E4(z)3−E6(z)2
. Combined with a criterion for algebraic independence this

established: for ξ as above at least three of the four numbers ξ , E2(ξ), E4(ξ) and
E6(ξ) are algebraically independent over Q.

3.3 c) Gel’fond-Schneider

Gel’fond [8] and Theodor Schneider [24] devised independently in 1934 transcendental
methods in order to solve David Hilbert’s seven problem: let α, β ∈ Q, α �= 0, 1 and
β /∈ Q, then αβ /∈ Q.

Their approaches could be united in a stronger method and were subject to
generalisations to exponential maps of commutative algebraic groups, for example
elliptic Weierstrass functions which parameterise elliptic curves.

Gel’fond went a step out of firm ground [9], asserting that he could prove
that, denoting d = [ Q(β) : Q], the numbers αβ, . . . , αβ

d−1
were algebraically

independent over Q2. This statement is since then called Gel’fond’s conjecture,
it was reproduced in Schneider’s book [25] on transcendental numbers (1957). The

best known result in this direction is still Guy Diaz [5]: there are at least
[

d+1
2

]

algebraically independent numbers among αβ, . . . , αβ
d−1

. For d = 3 it was already
proved by Gel’fond and gives the algebraic independence of the two numbers αβ

and αβ
2
.

On an other hand we have the analog of Lindemann-Weierstrass theorem for elliptic
functions (and even abelian functions, 1983) parameterising an elliptic curve with
complex multiplication:

C/�→ P2(C) z �→ (1 : ℘(z) : ℘′(z)),

then for α1, . . . , αm linearly independent over the field of multiplications, the numbers
℘(α1), . . . , ℘ (αm) are algebraically independent over Q. See [28, Theorem 39].

As it stands, Gel’fond method for algebraic independence is far from giving as
strong results as Siegel and Mahler’s methods. In the sequel we want to discuss a key
point of this method, its strength and weakness. This will lead us to recast the whole
approach in a more geometric mould, calling for a closer study of singularities.

2In the same note, Gel’fond asserts the algebraic independence of logarithms of multiplicatively independent
algebraic numbers as well.
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4. From Gel’fond to CIA

In transcendence and algebraic independence theory proofs usually proceed by
contradiction. One assume that the transcendence degree is smaller than expected
and one constructs (via extrapolation of an auxiliary function) polynomials taking
small values at the point under consideration. If the transcendence degree is assumed
to be zero one concludes with the size inequality (a guise of the product formula).
If the transcendence degree is assumed to be 1 then we may appeal to the following
criterium due to Gel’fond.

We denote t(P) = log M(P)+d◦P the size3 of the polynomial P with coefficients
in Z.

Theorem 1 (Gel’fond criterium). Let θ ∈ C and τ, δ : N → N× be two increasing
functions. Assume there exists a sequence of nonzero polynomials (PN )N∈N ⊂ Z[X ]
satisfying t(PN ) ≤ τ (N), d◦PN ≤ δ(N) and

− log |PN (θ)|
τ (N + 1)δ(N + 1)

−→
N→∞
∞.

Then θ is an algebraic number (over Q), zero of PN for all N large enough.

In higher dimension this criterium generalises as follows, see [18].

Theorem 2 (CIA). Let θ ∈ Cn and τ, δ : N → N× be two increasing functions.
Assume there exists a sequence of ideals (PN,1, . . . , PN,m(N))N∈N ⊂ Z[X1, . . . , Xn]
satisfying t(PN,i ) ≤ τ (N), d◦PN,i ≤ δ(N) for i = 1, . . . ,m(N),

σ(N + 1)n+1 := − log max1≤i≤m(N) |PN,i (θ)|
τ (N + 1)δ(N + 1)n

−→
N→∞
∞

and furthermore that the polynomials PN,1, . . . , PN,m(N) only have a finite number
of common zeros in the ball of radius exp(−σ(N)n+2τ (N)δ(N)n) centred at θ . Then
θ ∈ Q

n
is a common zero of the PN,i for all N large enough.

In the other direction we have:

Proposition 3. Let n ≥ 2 and ψ : N → R>0. There exists θ1, . . . , θn ∈ C
algebraically independent over Q and for all N ∈ N integers (a(N)i, j )i=1,...,n−1

j=0,1,2
of

absolute value ≤ N satisfying |a(N)i,2 θi+1 + a(N)i,1 θ1 + a(N)i,0 | < ψ(N) and a(N)i,2 �= 0.

Proof. See [18, Appendix]. �

The common zeros of the linear forms a(N)i,2 Xi+1+a(N)i,1 X1+a(N)i,0 , i = 1, . . . , n−1,
form a line (dimension 1). In particular, for n ≥ 2 the statement of CIA is false without
the hypothesis of dimension 0 in a neighbourhood of θ . Of course, this condition is
implicit in Theorem 1.

3Here M(P) stands for some norm or measure (preferably multiplicative) of the polynomial P , for example the
Mahler measure.
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5. Measures of algebraic independence

Assuming that the locus of zeros of the ideals appearing in Theorem 2 does not
intersect the prescribed ball (at all), we can go further in the conclusion and give a
lower bound for the distance between the point θ and a given variety.

Let θ ∈ Pn(C) and V ⊂ Pn defined over Q, of dimension d , it is a question
of bounding from below quantitatively the distance Dist(θ, V ) from θ to V where

log(Dist(θ, V )) is an average over x ∈ V (C) of log(Dist(θ, x)) := log
( ‖θ∧x‖
‖θ‖·‖x‖

)
,

in terms of the height h(V ) and the degree d(V ) of V . In case V is defined by a single
equation P(X0, . . . , Xn) = ∑

α PαXα0
0 . . . Xαn

n , we have Dist(θ, V ) = |P(θ)|
‖P‖·‖θ‖d◦ P

with ‖P‖ :=
√∑

α |Pα|2/
(d◦P
α

)
.

Set d = dim(V ) and let δ, τ , σ and U be real numbers≥ 1 satisfying σ d+1 < τ and

σ d+1δd(δh(V )+ (d + 1)τd(V )+ 3(d + 1)2 log(n + 1)δd(V )) < U. (2)

The starting point of the criterium is the following hypothesis:

Hypothesis 4. For each τ/σ d+1 < S < U/σ d+1 there exists forms Q1, . . . , Qm in
Z[X0, . . . , Xn] satisfying:

1) d◦Qi ≤ δ, log ‖Qi‖ ≤ τ ;

2) |Qi (θ)|
‖Qi‖·‖θ‖d◦Qi

< e−Sσ d+1
;

3) the forms Q1, . . . , Qm have no common zero in the ball

{x ∈ Pn(C);Dist(θ, x) ≤ e−Sσ d+2}.

Then Christian Jadot proved:

Theorem 5. Under Hypothesis 4 one has: log(Dist(θ, V )) ≥ −U.

Proof. See [16, Chapter 8]. �

In particular, making U tends to the left hand side of (2) one gets:

log(Dist(θ, V )) ≥ −σ d+1δd(δh(V )+ (d + 1)τd(V )+ 3(d + 1)2 log(n + 1)δd(V )).
(3)

For δ = 1 and d(V ) = 1, this statement improves a criterium for linear
independence of Nesterenko.

6. Descent and Gel’fond step

The proof of these criteria is by contradiction and rests on a descent of the dimension,
summarised in the following lemma:

Lemma 6. With all the hypothesis of Section 5, assume further that log(Dist(θ, V )) <
−U. Then, for all � = d + 1, . . . , 0 there exists a projective variety Z� defined over
Q of dimension �− 1 satisfying:
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1�) d(Z�) ≤ δd−�+1d(V ) and h(Z�) ≤ (δh(V )+ (d − �+ 1)τd(V ))δd−�;

2�) log(Dist(θ, Z�)) < −σ�δ�−1(δh(Z�)+ �(τ + 3(d + 1) log(n + 1)δ)d(Z�)).

Proof. See ibidem [16, Chapter 8]. �

One takes Zd+1 = V . Since Z0 = ∅ one has log(Dist(θ, Z0)) = 0 leading
to a contradiction with 20). It follows that the hypothesis log(Dist(θ, V ) < −U is
unsustainable, proving Theorem 5.

In the proof of Theorem 2 (CIA) in Section 4, the existence of common zeros of
the forms Qi close to θ prevent descending to � = 0 in Lemma 6. The last step is
replaced by the fact that U = ∞. One constructs a sequence of varieties (Z (i)1 )i∈N ,

of dimension zero, such that Dist(θ, Z (i)1 ) −→
i→∞ 0, and we show (Gel’fond step) that

they coincide. . . and thus must ultimately contain θ .
Weakening the hypothesis log(Dist(θ, V )) < −U to log(Dist(θ, V )) < −εU for

some 0 < ε ≤ 1 such that εδ ≥ 1, then this relaxed hypothesis is realisable and
Lemma 6 leads to a statement of type approximation.

For example taking V = Pn, σ = 1, one has a more accurate result. More precisely,
let δ, τ be real numbers ≥ 1 and 0 < ε ≤ 1 satisfying εδ ≥ 1, set

U := ε(n + 1)(τ + 3δ log(n + 1))δn. (4)

Denote H(δ, τ ) (resp. H(ε2δ, ε2τ )) the Hypothesis 4 with σ = 1 and the parameters
δ, τ and U as in (4) (resp. ε2δ, ε2τ and ε2n+2U ).

Corollary 7. Assume hypotheses H(δ, τ ) and H(ε2δ, ε2τ ) are verified. Then, there
exists α ∈ P(Q) satisfying:

1) d(α) := [ Q(α) : Q] ≤ δn and d(α)h(α) ≤ n(τ + 2δ log(n + 1))δn−1;

2) log(Dist(θ, α)) < −ε2n+3(1− ε)(δh(α)+ τ + 3δ log(n + 1))d(α).

7. Approximations

A natural question is whether the approximation property in Corollary 7 is true
independently of the Hypothesis 4 of the criterium.

Conjecture 8 (First approximation conjecture). Let n ∈ N∗ there exists a real c(n)
such that for all θ ∈ Pn(C), d ∈ {0, . . . , n}, and reals δ ≥ c(n), τ ≥ 1, there exists
an algebraic subvariety Z of Pn of dimension d, defined over Q, satisfying:

1) d(Z) ≤ (c(n)δ)n−d and h(Z) ≤ c(n)n−dτδn−d−1;

2) log(Dist(θ, Z)) < −c(n)d−nδd(δh(Z)+ (τ + log(δ))d(Z)).

This conjecture is still open. It is proved for d ∈ {n − 3, n − 2, n − 1, n} but the
interesting case is d = 0 which is reached only for n ≤ 3, [19]. Applications of the
case n = 1 are detailed in [21]. It is also proved in the functional case (replacing the
base ring Z by a ring of formal series in one variable and the distance by the order of
vanishing along an analytic curve), [20].

In the case d = 0, one may hope to be a little more precise:
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Conjecture 9 (Second approximation conjecture). Let n ∈ N∗ there exists a
real c′(n) such that for all θ ∈ Pn(C), d ∈ {0, . . . , n}, and reals δ ≥ c′(n),
τ ≥ c′(n) log(δ + 1), there exists α ∈ Pn(Q), satisfying:

1) d(α) := [ Q(α) : Q] ≤ (c′(n)δ)n and h(α)d(α) ≤ c′(n)nτδn−1;

2) log(Dist(θ, α)) < −c′(n)−n(δh(α)+ τ )d(α).

This is shown for n = 1, 2 as an extension of Conjecture 8, [19].

8. Approximations of analytic subgroups

Many questions of algebraic independence deal with values of analytic or meromorphic
functions satisfying differential and/or functional equations.

The most classical case is with the exponential function which is the exponential
map of the multiplicative group Gm . For example, Gel’fond-Schneider’s conjecture
is written naturally with the one-parameter analytic subgroup ϕ : C → C × (C×)d ,
z �→ (z, ez, eβz, . . . , eβ

d−1z), where β is an algebraic number of degree d ≥ 2 over Q.
It amounts to prove that the origin is the only point for which ϕ(z) is defined over

a field of transcendence degree < d . We know [5] that it is the only point where ϕ(z)
is defined over a field of transcendence degree < [(d + 1)/2].

Question 10. Let G ⊂ Pn be a commutative algebraic group of dimension g and
ϕ a one-parameter subgroup, Zariski dense in G, defined over a number field K .
If θ ∈ im(ϕ) belongs to an algebraic subvariety of G of dimension k ≥ 1, defined
over K , does there exist a real number c > 0 and infinitely many cycles Z of
dimension 0, defined over K , satisfying:

log(Dist(θ, Z)) < −c · (h(Z)+ d(Z))g/k?

It is interesting to state an analogous conjecture for the analytic subgroups of several
parameters: if ϕ is a t-parameter analytic subgroup of G ⊂ Pn, Zariski dense in G,
defined over a number field and θ ∈ im(ϕ) belongs to an algebraic subvariety of G
of dimension k, does there exists c > 0 and infinitely many cycles Z of dimension 0,
defined over K and satisfying log(Dist(θ, Z) < −c(h(Z) + d(Z))1/σ k, where we
assume

σ := min
H
(dim (im(ϕ)/im(ϕ) ∩ H) / dim(G/H)) < 1

the minimum being taken over all the proper algebraic subgroups H of G?
Using a zero estimate, one can give a positive answer to a weaker version of the

above Question 10, omitting the term h(Z). Here is the sketch of proof of this claim.

Claim 11. In the context of Question 10 there exists infinitely many cycles Z , defined
over K , of dimension 0, satisfying

log(Dist(θ, Z)) < −c · d(Z)g/k .
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Proof. For a given integer D, one constructs a sequence q1, . . . , qg of forms in
A/g (viewed as sections on G) of degrees ≤ D, regular on G and such that
ordϕ(qi) � Dg. The construction of q1 rests on linear algebra. The forms
q1, . . . , qi−1 being constructed for some i ≤ g, let p be a prime ideal associated
to (q1, . . . , qi−1) (therefore of rank i − 1). In order to construct qi we differentiate
qi−1 along ϕ sufficiently to get a form of degree � D not in p. According to the
zero estimate, this can be achieved with a derivation of order T bounded above
by T � Di−1. The form qi is obtained as a general linear combination of the
various forms constructed when p varies. It is therefore of degree� D and satisfies
ordϕ(qi) � Dg, because i − 1 < g. One then deduces with a Schwarz lemma that
− log ‖qi(θ)‖ � Dg.

Then, in a second run, we intersect the variety V containing θ with k general linear
combinations of the qi so that the dimension steps down to 0. We observe that V is
smooth (thus, Cohen-Macaulay) in a neighbourhood of θ and that the forms qi do
not vanish simultaneously in this neighbourhood. In this way we get, step by step,
algebraic sets V = Vk, . . . , V0 with Vi pure of dimension i , satisfying d(Vi) �
d(V )Dk−i and − log Dist(θ, Vi) � Dg, by Bézout theorems (geometric and metric,
see [16, Chapter 6]). It suffices to set Z a relevant component of V0 defined over K .

�

The above proof rests on the fact that derivations of a section along an analytic
subgroup in a commutative algebraic group does not increase the degree of the section.
But the height of the section is increased roughly by O(T log(T )) where T is the
order of the derivation. In the above proof, it is not clear that one actually needs to
differentiate qi−1 as much as Di−1 times in order to escape from p. In fact, Bertini’s
lemma shows that, if at each step we have enough freedom in the choice of qi−1,
we can assert that p has multiplicity 1 as a component of (q1, . . . , qi−1). And then a
derivation of bounded order would suffice in order to construct qi . Some intermediate
statement may be more at hand (for example not requiring so much freedom but
allowing an order of derivation up to D).

A positive answer to the above Question 10, combined with the classical
construction-extrapolation in the proofs of transcendency, imply for example a
positive answer to Gel’fond-Schneider conjecture. More precisely, one proceeds as
follows: construct a polynomial P ∈ Z[Y, X1, . . . , Xd] of degree D, height c1 D2,
satisfying:

log |P(θ)| < −c2 Dd+1 log(D).

We then consider the cycle Z given by the above Question 10 and one evaluates
(noting t(Z) := h(Z)+ d(Z))

log |P(Z)| :=
∑

x∈Z

log |P(x)| ≤ −
∑

x∈Z

(min(c2 Dd+1 log(D); log ‖θ − x‖)+ c1 D2)

≤ −c2 min(Dd+1 log(D); t(Z)(d+1)/k)+ c3 D2t(Z),

then, by the size inequality for P(Z) ∈ Q,

log |P(Z)| ≥ −c4 D2t(Z).
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Taking D =
[

t (Z)1/k

(log(t (Z)))1/(d+1)

]
and assuming t(Z) large enough, we get

t(Z)(d+1)/k(log(t(Z)))2/(d+1) � t(Z)1+2/k ,

from which follows k > d − 1. This allows to conclude that the dimension of an
algebraic subvariety of C × (C×)d containing (z, ez, eβz . . . , eβ

d−1z) is at least d . . .
if we have a positive answer to Question 10.

We conclude this note by giving a multiplicity estimate which is useful in the above
context:

Lemma 12. Let ω(W ) be the smallest degree of a form vanishing identically on W,
one has ordϕ(W )� d(W )ω(W )dim(W ).

Proof. We proceed by recursion on the dimension d of W . The case of dimension 0 is
verified because ordϕ(W ) is just the multiplicity of the point ϕ(0) as component of W .
Let P be a form of degree ω(W ) vanishing on W . A derivative P ′ of P along ϕ of
bounded order, intersect properly W . Bézout’s theorems imply ordϕ(W ∩ Z(P ′)) �
ordϕ(W ) and d(W ∩ Z(P ′))� d(W )ω(W ). Assume the case of dimension d − 1 is
established, for all component Y of W ∩ Z(P ′) of dimension d − 1 (d = dim(W )),
one has ordϕ(Y )� d(Y )ω(Y )d−1 and ω(Y ) ≤ ω(W ) (because Y ⊂ W ), from which
follows

ordϕ(W )� ordϕ(W ∩Z(P ′)) =
∑

Y

mY ordϕ(Y )

�
∑

Y

mY d(Y )ω(Y )d−1 ≤ d(W ∩Z(P ′))ω(W )d−1 � d(W )ω(W )d . �
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Abstract. We study infinite series of the form

∞∑

n=1

A(n)

B(n)
xn

where A(t), B(t) ∈ C[t] are polynomials and 0 < x ≤ 1. We relate these series to other
series involving zeros of the Riemann zeta-function. We also discuss functional relations
between such power series and the zeros of other zeta-functions.
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1. Introduction

In 1735, Euler proved that for k ∈ N,

ζ(2k) =
∞∑

n=1

1

n2k
= (2π i)2k B2k

2(2k)!
,

where Bk is the k-th Bernoulli number given by the generating function

t

et − 1
=
∞∑

k=0

Bk tk

k!
.

Thus, the Bernoulli numbers are rational numbers and we conclude that
ζ(2k) ∈ π2k Q. The nature of ζ(2k + 1) however is still shrouded in mystery even
though spectacular breakthroughs have been made by Apéry [A] in 1978 who showed

∗Research of the first author was supported by an NSERC Discovery grant.
†Research of the second author was supported by an Ontario Graduate Scholarship.
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that ζ(3) �∈ Q and by Rivoal [R] in 2000 who showed that for infinitely many k,
ζ(2k + 1) �∈ Q.

It is thus natural to inquire whether we can evaluate explicitly a series of the form
∞∑

n=1

A(n)

B(n)
(1)

where A(t), B(t) ∈ C[t] are polynomials with deg A < deg B and natural conditions
are imposed to ensure that the series converges. We may consider more generally
power series of the form

∞∑

n=1

A(n)

B(n)
xn (2)

with |x | ≤ 1. The goal of this paper is to investigate these series and relate them to
series of the form

∑

ρ

A(ρ)

B(ρ)
yρ (3)

where the sum is over non-trivial zeros of the Riemann zeta-function. There is
nothing special about the Riemann zeta-function. One could replace it with any
other L-function or more generally, a suitable element of the Selberg class. Such a
connection was first discovered in a recent paper by S. Gun, M. R. Murty and P. Rath
[GMR1] but their focus was on the transcendental nature of such sums. Here, our
focus will be more on establishing a curious functional relation between sums of the
form (2) and (3).

Returning momentarily to series of the form (1) and (2), we can identify certain
cases when these can be evaluated explicitly. For example, if A(t) ∈ Q[t], B(t) ∈ Q[t]
where B(t) has simple rational roots, S. D. Adhikari, N. Saradha, T. N. Shorey and
R. Tijdeman [ASST] showed that (1) can be written as a linear form in logarithms of
algebraic numbers with algebraic coefficients, and so by Baker’s theory [B], the sum is
transcendental provided it is not zero. They also discussed the transcendence of linear
combinations of sums of the form (2) when x ∈ Q (see Corollary 4.1 of [ASST] as
well as Corollary 3.1).

If B(t) does not have simple rational roots, the situation becomes more complicated,
as can be inferred by the fact that ζ(3) or generally ζ(2k + 1) fall into this category.
The first serious investigation of such series was initiated by M. R. Murty and
C. Weatherby [MW1] as well as S. Gun, M. R. Murty and P. Rath [GMR2]. In [MW1],
the authors study (among other things)

∑

n∈Z

A(n)

B(n)
(4)

and derive general results and explicit evaluations. In particular, Euler’s evaluation of
ζ(2k) is a special case of their work. A stunning example is given by the following:

∑

n∈Z

1

An2 + Bn + C
= 2π√

D

(
e2π
√

D/A−1

e2π
√

D/A − 2 cos(π B/A)eπ
√

D/A + 1

)

(5)

is transcendental if A, B,C ∈ Z and −D = B2 − 4AC < 0.
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More generally, one can evaluate explicitly

∑

n∈Z

1

(An2 + Bn + C)k

and deduce transcendence results [MW2]. A critical role is played by a theorem of
Nesterenko [N] that states that π and eπ

√
D are algebraically independent. Thus, (5) is

a transcendental number.
The essential idea animating much of the work in [MW1] and [MW2] is the

following. Writing A(X)/B(X) as a partial fraction, (and assuming for now that
B(X) has only simple zeros) we are led to sums of the form

∑

n∈Z

1

n + αi
(6)

where the αi are roots of B(X). This is π cotπαi deduced from the classical cotangent
expression

π cotπ z =
∑

n∈Z

1

n + z
, z �∈ Z. (7)

Of course, we must make some assumptions about the αi and also understand the
convergence in (6) and (7) as a limit:

∑

n∈Z
f (n) = lim

N→∞
∑

|n|≤N

f (n).

By successive differentiation of (7) one can handle the case when B(X) has multiple
roots as well. These considerations lead one to explicit evaluations of series of the
form (4). To go further into the study, one needs to invoke some algebraic number
theory as well as a celebrated conjecture of Gelfond and Schneider, namely that if α is
an algebraic number with α �= 0, 1 and β is an algebraic irrational number of degree
d , then the d − 1 numbers

αβ, αβ
2
, · · · , αβd−1

(8)

are algebraically independent. A result of Diaz [D] states that the transcendence
degree of the field generated by the numbers in (8) over Q is at least [(d + 1)/2].
When d = 2, this is the famous Gelfond-Schneider theorem resolving a problem of
Hilbert’s list of 23 problems presented at the 1900 congress of mathematics in Paris.
The case d = 3 was also known earlier and is due to Gelfond. Invoking these results,
we can deduce various transcendence theorems. We refer the reader to [MW1] for
precise details.

In [PP], the authors consider (1), where the sum is over n ≥ 1:

∞∑

n=1

A(n)

B(n)



206 M. Ram Murty and Siddhi Pathak

and (via partial fractions) are led to the study of the series of the form

∞∑

n=1

1

n + αi
(9)

and more generally
∞∑

n=1

1

(n + αi )
k
. (10)

The fundamental idea in their work is the recognition that (9) is essentially the
digamma function �(αi ) and (10) is related to the k-th derivative �(k)(αi ). More
precisely, we have

�(z) := 	′(z)
	(z)

and

−�(z) = γ + 1

z
+
∞∑

n=1

(
1

n + z
− 1

n

)

where γ is Euler’s constant. The digamma function �(x) appears in the constant term
of the Laurent series expansion of the Hurwitz zeta-function at s = 1. Recall that for
0 < x ≤ 1, the Hurwitz zeta-function

ζ(s, x) =
∞∑

n=0

1

(n + x)s

has the expansion:

ζ(s, x) = 1

s − 1
−�(x) + O(s − 1).

Thus, one can prove without difficulty that

∞∑

n=1

A(n)

B(n)
,

where B(t) has simple zeros α1, α2, . . . , αr (say), is essentially a linear combination
of�(αi ) (see Theorem 10 of [MS]). If the αi are rational numbers, a classical theorem
of Gauss discovered in 1813 shows that for (a, q) = 1,

�

(
a

q

)

= −γ − log 2q − π
2

cot
πa

q
+ 2

∑

0< j≤q/2

cos
2πaj

q

(

log sin
π j

q

)

, (11)

see for example [MS, pg. 300]. If however the zeros are neither simple, nor rational
then there are considerable difficulties in evaluating in “closed form” the value of
the sum and in ascertaining its algebraic or transcendental nature. For instance, if the
roots of B(t) are rational, but not simple, the value of the sum can be given as a linear
combination of special values of the Hurwitz zeta-function at rational arguments.
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In [GMR2], the authors used the Chowla-Milnor conjecture regarding the Q-linear
independence of

ζ

(

k,
a

q

)

1 ≤ a < q, (a, q) = 1.

The nature of the Hurwitz zeta-function at irrational arguments is unknown and (to
our knowledge) there has been scant attention given to such questions.

In this paper, we offer a new perspective on sums of the form (1) and (2) and relate
such a study to cognate sums involving the zeros of the Riemann zeta-function. As will
be explained below, one could replace the Riemann zeta-function by any L-function
or more generally by an element of the Selberg class. To keep the prerequisites of this
paper to a minimum, we do not do this here but indicate in our concluding remarks
what needs to be modified and what can be expected.

Such sums involving zeros of the Riemann zeta-function are intricately connected
to the Laurent series expansion of its logarithmic derivative. A case in point is
Li’s criterion for the Riemann hypothesis obtained by X.-J. Li [Li] in 1997. More
specifically, let

λn :=
∑

ρ

(

1−
(

1− 1

ρ

)n)

,

where the sum is over non-trivial zeros of the Riemann zeta-function. Then the
Riemann hypothesis is equivalent to the positivity of λn for all n ∈ N. Furthermore, if

−ζ
′

ζ
(s) = 1

s − 1
+
∞∑

j=0

η j (s − 1) j , (12)

then it was shown in [BL] that

λn = −
n∑

j=1

[(
n

j

)

η j−1

]

+1− (log 4π +γ )n
2
+

n∑

j=2

(−1) j
(

n

j

)

(1− 2− j )ζ( j). (13)

The study of η j ’s is highly important for a variety of reasons. They enter into our
understanding of Li’s criterion for the Riemann hypothesis to hold as expressed by the
formula (13) above. In this context, Coffey [Co] writes

λn = 1− n

2
(γ + log 4π)+ S1(n)+ S2(n),

where

S1(n) =
n∑

j=2

(−1) j
(

n

j

)(

1− 1

2 j

)

ζ( j)

and

S2(n) = −
n∑

j=1

(
n

j

)

η j−1,
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where η j ’s are as defined in (12). He shows that for n ≥ 2,

1

2
(n(log n + γ − 1)+ 1) ≤ S1(n) ≤ 1

2
(n(log n + γ + 1)− 1),

so that

λn = 1

2
n log n + S2(n)+ O(n).

Now, Bombieri and Lagarias [BL] have shown that to deduce the Riemann hypothesis,
it suffices to show that for any ε > 0, there is a constant c(ε) > 0 such that

λn ≥ −c(ε)eεn,

for every n ≥ 1. In other words, the Riemann hypothesis can be deduced from a good
estimate for S2(n) involving the η j ’s.

A generalized version of the η j -coefficients appear in our analysis of sums of the
form (3). In particular, let s0 be a pole of logarithmic derivative of the Riemann
zeta-function, i.e, s0 = 1, −2n for some n ∈ N or ρ for a non-trivial zero ρ of ζ(s).
We define the generalized η j -coefficients by

−ζ
′

ζ
(s) = R(s0)

s − s0
+
∞∑

j=0

η j (s0) (s − s0)
j , (14)

where R(s0) is the residue at s = s0 of −ζ ′/ζ . It is easy to see that R(s0) = 1
if s0 = 1 and R(s0) = −1 if s0 = −2n for some n ∈ N. If s0 = ρ for some
non-trivial zero ρ of the Riemann zeta-function, −R(ρ) is simply the order of the
zero ρ and there is a folklore conjecture that the non-trivial zeros of ζ(s) are simple
and thus, R(ρ) = −1. When s0 = 1, these are the classical η-coefficients defined by
Laurent series expansion of − ζ ′/ζ around s = 1 as given in (12). These generalized
η-coefficients enter into formulas stated in Theorem 1.3 below in a fundamental way
if B(t) has a simple zero at s0 which also happens to be either 1 or a zero of ζ(s). In
order to understand these coefficients concretely, we derive an integral representation
and a limit formula for these constants in a more general setting.

Proposition 1.1. Let

f (s) :=
∞∑

n=1

an

ns

be a Dirichlet series, absolutely convergent on�(s) > 1. Suppose that for any A > 0,

S(x) :=
∑

n≤x

an = δ x + E(x), (15)

for some δ ∈ R and

E(x) = O

(
x

(log x)A

)

. (16)
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Then, by partial summation, f (s) can be analytically continued to �(s) ≥ 1, with a
possible simple pole at s = 1 and one can write its Laurent series expansion around
s = 1 as

f (s) = δ

s − 1
+
∞∑

j=0

η j (1, f )(s − 1) j .

Then,

η0(1, f ) = δ +
∫ ∞

1

E(t)

t2
dt,

and for j ≥ 1,

η j (1, f ) = (−1) j

j !

∫ ∞

1

E(t)

t2

(
(log t) j − j(log t) j−1

)
dt. (17)

Further, for j ≥ 1,

η j (1, f ) = (−1) j

j !

{

lim
x→∞

[
∑

n≤x

an(log n) j

n

]

− δ
(log x) j+1

j + 1

}

.

Thus, the generalized η j -coefficients defined in the context of −ζ ′/ζ by (14) are
nothing but η j (s0) := η j (s0,−ζ ′/ζ ) in the above notation.

On the other hand, the constants η j (1, ζ ) (known as Stieltjes constants) were first
introduced by Stieltjes (see [Na, pg. 161]), who proved that

η j (1, ζ ) = (−1) j

j !

{

lim
x→∞

[
∑

n≤x

(log n) j

n

]

− (log x) j+1

j + 1

}

,

in a letter to Hermite in 1885. This formula seems to have been rediscovered by Briggs
and Chowla in 1955 (see [Na, pg. 163]). Clearly, this result can be stated in a more
general setting, as is seen in Proposition 1.1.

Since this paper focuses on the logarithmic derivative of the Riemann zeta-function,
we will use η j (s0) for η j (s0,−ζ ′/ζ ) and η j for η j (1,−ζ ′/ζ ) to simplify notation. For
the sake of clarity, we state the special case for f (s) = −ζ ′/ζ(s) separately below.

Proposition 1.2. Let η j be as defined in (12). Let �(n) denote the von-Mangoldt
function defined by

�(n) =
{

log p if n = pα, α ≥ 1,

0 otherwise.
(18)

Then, for j ≥ 1,

η j = (−1) j

j !

{

lim
x→∞

[
∑

n≤x

�(n)(log n) j

n

]

− (log x) j+1

j + 1

}

.

The main theorem of this paper is the following.
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Theorem 1.3. Let x > 1 and A(t), B(t) ∈ C[t] with B(t) having simple zeros, α1,
α2, . . . αr . First suppose that none of the αi equal 1, a non-trivial zero of ζ(s) or −2n
(n ∈ N).

Then, if x is not a prime power,

∑

ρ

A(ρ)

B(ρ)
xρ +

∞∑

n=1

A(−2n)

B(−2n)

(
1

x

)2n

− x A(1)

B(1)

= −
∑

i

λi x
αi

(
∑

n≤x

�(n)

nαi

)

−
∑

i

λi x
αi
ζ ′

ζ
(αi), (19)

where

A(t)

B(t)
=

∑

i

λi

t − αi
.

Now, suppose α1 = ρ0, a non-trivial zero of ζ(s) and none of the α j , 2 ≤ j ≤ r
are equal to 1, ρ or −2n. Then,

∑

ρ �=ρ0

A(ρ)

B(ρ)
xρ +

∞∑

n=1

A(−2n)

B(−2n)

(
1

x

)2n

− x A(1)

B(1)

= −
∑

i

λi x
αi

(
∑

n≤x

�(n)

nαi

)

−
∑

i �=1

λi x
αi
ζ ′

ζ
(αi )

− xρ0

⎛

⎝
∑

i �=1

λi xαi

ρ0 − αi

⎞

⎠+ λ1 xρ0 η0(ρ0)+ λ1xρ0 log x . (20)

Similarly, if α1 = −2m for some m ∈ N and none of the α j , 2 ≤ j ≤ r are equal to
1, ρ or −2n, then,

∑

ρ

A(ρ)

B(ρ)
xρ +

∞∑

n=1,
n �=m

A(−2n)

B(−2n)

(
1

x

)2n

− x A(1)

B(1)

= −
∑

i

λi x
αi

(
∑

n≤x

�(n)

nαi

)

−
∑

i �=1

λi x
αi
ζ ′

ζ
(αi )

+ x−2m

⎛

⎝
∑

i �=1

λi xαi

2m + αi

⎞

⎠+ λ1 x−2m η0(−2m)+ λ1x−2m log x, (21)



Relations between Power Series and Zeros of Zeta Functions 211

and when α1 = 1 and none of the α j , 2 ≤ j ≤ r are equal to 1, ρ or −2n, then,

∑

ρ

A(ρ)

B(ρ)
xρ +

∞∑

n=1

A(−2n)

B(−2n)

(
1

x

)2n

− x
∑

i �=1

λi

1− αi

= −
∑

i

λi x
αi

(
∑

n≤x

�(n)

nαi

)

−
∑

i �=1

λi x
αi
ζ ′

ζ
(αi )+ λ1 x η0(1)+ λ1 x log x . (22)

Generally, if B(t) has a subset of zeros which are equal to 1 or a zero of ζ(s), one
modifies (19) in the appropriate way.

If x is a prime power, then the sum

∑

n≤x

�(n)

nαi

on the right hand side of (19), (20), (21) and (22) is replaced by

∑

n<x

�(n)

nαi
+ 1

2

�(x)

xαi
.

2. Preliminaries

In our discussion, a fundamental role is played by:

Lemma 2.1. If x > 1, x �= pm (p prime) then

∑

n≤x

�(n)

ns
= −ζ

′

ζ
(s)+ x1−s

1− s
−

∑

ρ

xρ−s

ρ − s
+
∞∑

n=1

x−2n−s

2n + s
, (23)

provided s �= 1, s �= ρ, s �= −2n for any n ∈ N.
If s = 1, a non-trivial zero ρ0 of ζ(s) or −2m for some m ∈ N, then the right hand

side of (23) should be replaced by

η0(1)+ log x −
∑

ρ

xρ−1

ρ − 1
+
∞∑

n=1

x−2n−1

2n + 1
,

or

η0(ρ0)+ log x + x1−ρ0

1− ρ0
−

∑

ρ �=ρ0

xρ−ρ0

ρ − ρ0
+
∞∑

n=1

x−2n−ρ0

2n + ρ0
,

or

η0(−2m)+ log x + x1+2m

1+ 2m
−

∑

ρ

xρ+2m

ρ + 2m
+
∞∑

n=1,
n �=m

x−2n+2m

2n − 2m
,

respectively.
If x = pm, the left hand side must be corrected by the term �(x)/2.
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Proof. This follows by the standard method of contour integration. The statement of
the first part is found in several places (e.g. [IK, pg. 566] where we caution the reader
that there is a typo in (25.21) in which the second “=” symbol on the right hand side
should be a minus sign). Since no proof is available in the English language, we now
give it.

We use Perron’s formula in the following form [T, pg. 60]. Let

f (s) =
∞∑

n=1

an

ns
, σ = �(s) > 1,

where an = O(�(n)), �(n) is increasing and assume

∞∑

n=1

|an|
nσ
= O

(
1

(1− σ)α
)

for some α ≥ 0, as σ → 1+. If c > 0 and σ + c > 1, x is not an integer and N is the
nearest integer to x , we have

∑

n≤x

an

ns
= 1

2π i

∫ c+i T

c−i T
f (s +w) xw

w
dw + O

(
xc

T (σ + c − 1)α

)

+ O

(
�(2x)x1−σ log x

T

)

+ O

(
�(N)x1−σ

T |x − N |

)

.

If x is an integer, then

x−1∑

n=1

an

ns
+ ax

2xs
= 1

2π i

∫ c+i T

c−i T
f (s +w) xw

w
dw + O

(
xc

T (σ + c − 1)α

)

+ O

(
�(2x)x1−σ log x

T

)

+ O

(
�(x)x−σ

T

)

,

for any T > 0. We apply this to

−ζ
′

ζ
(s) =

∞∑

n=1

�(n)

ns
.

Since �(n) is supported on prime powers, we deduce

∑

n≤x

�(n)

ns
= 1

2π i

∫ c+i T

c−i T

(

−ζ
′

ζ
(s +w)

)
xw

w
dw + O

(
xc

T (σ + c − 1)α

)

+ O

(
x1−σ log2 x

T

)

+ O

(
log(N) x1−σ

T |x − N |

)
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if x is not a prime power, whereas if x is a prime power, the last term is replaced by

O

(
x−σ log x

T

)

.

Here c is chosen so that c + σ > 1.
The integral is evaluated using Cauchy’s residue theorem as follows. If R denotes

the oriented rectangle with vertices c − iT , c + iT , −U + iT and −U − iT , with U
large and unequal to an integer, then by the residue theorem,

1

2π i

∫

R

(

−ζ
′

ζ
(s +w)

)
xw

w
dw = −ζ

′

ζ
(s)+ x1−s

1− s
−

∑

ρ

xρ−s

ρ − s
+

U∑

n=1

x−2n−s

2n + s

because

−ζ
′

ζ
(s + w) xw

w

has poles at w = 0, 1 − s, ρ − s and −2n − s with |�(ρ)| ≤ T and n ≤ U in the
rectangle R. We want to let T ,U →∞ but before we do that, we need to estimate the
line integrals along the other three edges of the rectangle. Of course, we must choose
T so that it is not the ordinate of a zero of ζ(s). But these estimates are quite standard
(see [Mu, Exercise 7.2.4]).

The key point is to know for this suitable choice of T , we have

∣
∣
∣
∣−

ζ ′

ζ
(s +w)

∣
∣
∣
∣ = O(log2 T )

which leads to the final estimate of

O

(
xc log2 T

T log x

)

for the horizontal line integrals. For the vertical line integral, we have an estimate of

O

(
log U

U
· T

x T

)

as seen in [Mu, pg. 392]. We let U →∞ first and then let T →∞ to deduce the final
result. This completes the proof of Lemma 2.1 if s �= 1, ρ or −2n for n ∈ N.

If s = 1, ρ0 or −2m for some m ∈ N, we take limits of both sides as s → 1, ρ0 or
−2m. We illustrate this using the case of s = 1 since the analysis for s = ρ0 or −2m
is similar. Taking the limit of right-hand side of (23) as s → 1, we obtain

−
∑

ρ

xρ−1

ρ − 1
+
∞∑

n=1

x−2n−1

2n + 1
+ lim

s→1

(
x1−s

1− s
− ζ
′

ζ
(s)

)

.
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Now, using (14) at s0 = 1, R(s0) = 1 and

x1−s

1− s
= −1

s − 1
+ log x + O(1− s),

we see that the limit evaluates to η0(1)+ log x and thus, Lemma 2.1 is proved. �

Incidentally, η0(1) = −γ and this is not difficult to see because

ζ(s) = 1

s − 1
+ γ + O(s − 1).

3. Proofs of the Propositions

In this section, we give proofs of the Propositions in Section 1.

3.1 Proof of Proposition 1.1

Let

f (s) =
∞∑

n=1

an

ns
.

Then the usual partial summation method gives,

f (s) = s
∫ ∞

1

S(x)

xs+1
dx

= δ s

s − 1
+ s

∫ ∞

1

S(x)− δ x

xs+1
dx .

By our hypothesis, the integral on the right hand side converges absolutely for
�(s) ≥ 1. Thus, we can derive the Laurent expansion at s = 1 using this integral.
Writing E(x) = S(x)− δx , we find

s
∫ ∞

1

E(x)

xs+1 dx = ((s − 1)+ 1)
∫ ∞

1

E(x)

x2

∞∑

j=0

(−1) j (log x)
j

j !
(s − 1) j dx

=
∫ ∞

1

E(x)

x2

∞∑

j=0

(−1) j (log x) j

j !
(s − 1) j+1 dx

+
∫ ∞

1

E(x)

x2

∞∑

j=0

(−1) j (log x) j

j !
(s − 1) j dx

=
∫ ∞

1

E(x)

x2 dx

+
∞∑

j=1

(−1) j

j !
(s − 1) j

∫ ∞

1

E(x)

x2

(
(log x) j − j(log x) j−1

)
dx,
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the interchange of summation and integral being justified by the absolute convergence
of the integral at s = 1. Thus, we see that an integral representation for the Laurent
series coefficients at s = 1 of a general Dirichlet series can be obtained.

On the other hand, analysis with the help of partial summation gives

∑

n≤x

an(log n) j

n
= S(x) (log x) j

x
+

∫ x

1

S(t)

t2

(
(log t) j − j(log t) j−1

)
dt

= S(x) (log x) j

x
+ δ

∫ x

1

(log t) j

t
dt − j δ

∫ x

1

(log t) j−1

t
dt

+
∫ x

1

E(t)

t2

(
(log t) j − j(log t) j−1

)
dt,

by (15). Hence, we deduce that

∑

n≤x

an(log n) j

n
= δ (log x) j+1

j + 1
+

∫ ∞

1

E(t)

t2

(
(log t) j − j(log t) j−1

)
dt

+
(

S(x) (log x) j

x
− δ (log x) j

)

+ E(x),

where

E(x) =
∫ ∞

x

E(t)

t2

(
(log t) j − j(log t) j−1

)
dt.

Note that E(x) is the tail of a convergent integral by (16) and since j ≥ 1 and
therefore, tends to zero as x → ∞. Moreover, the third term on the right hand side
also goes to zero as x → ∞ by (15). On comparison with (17), the proposition is
proved.

3.2 Proof of Proposition 1.2

Let �(n) denote the von-Mangoldt function given by (18). Recall that

−ζ
′

ζ
(s) =

∞∑

n=1

�(n)

ns
,

for �(s) > 1 and that

−ζ
′

ζ
(s) = 1

s − 1
+
∞∑

j=0

η j (s − 1) j .

Let
ψ(x) :=

∑

n≤x

�(n).
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Then the prime number theorem (see [Mu, Theorem 4.2.9]) gives

ψ(x) = x + E(x),

with
E(x) = O

(
x exp (−c (log x)1/10)

)
,

for some positive constant c. Thus, we can apply Proposition 1.1 to obtain the result.

4. Proof of the Main Theorem

First suppose that x is not a prime power. Without loss of generality, we may assume
that B(t) is monic. For the moment, we suppose that B(t) has only simple zeros and
none of which are equal to a non-trivial zero or a pole of the Riemann zeta-function,
or −2n for some natural number n. We write using partial fractions

A(t)

B(t)
=

∑

i

λi

t − αi
(24)

where λi = A(αi )/B ′(αi ). Then

∑

ρ

A(ρ)

B(ρ)
xρ =

∑

i

λi

(
∑

ρ

xρ

ρ − αi

)

.

We analyze the inner sum using the lemma: by (23),

∑

ρ

xρ−α

ρ − α = −
ζ ′

ζ
(α)+ x1−α

1− α +
∞∑

n=1

x−2n−α

2n + α −
∑

n≤x

�(n)

nα
.

We put α = αi , multiply by λi xαi and sum over the i to get

∑

ρ

A(ρ)

B(ρ)
xρ = −

∑

i

λi x
αi
ζ ′

ζ
(αi )+ x A(1)

B(1)
−

∑

i

λi x
αi

(
∑

n≤x

�(n)

nαi

)

+
∞∑

n=1

x−2n

(
∑

i

λi

2n + αi

)

.

Note that using (24),
∑

i

λi

2n + αi
= − A(−2n)

B(−2n)
.

This proves that

∑

ρ

A(ρ)

B(ρ)
xρ +

∞∑

n=1

A(−2n)

B(−2n)

(
1

x

)2n

= x A(1)

B(1)
−

∑

i

λi x
αi

(
∑

n≤x

�(n)

nαi

)

−
∑

i

λi x
αi
ζ ′

ζ
(αi ).
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An appropriate modification gives the case when x is a prime power where we need
to add

1

2
�(x)

(∑

i

λi

)

.

If we assume that deg A ≤ deg B − 2, then one can deduce from the partial fraction
decomposition of A(X)/B(X) that

∑
i λi = 0.

Finally, when B(t) has a zero at 1, ρ0 or −2m, the terms in the summation have
to be adjusted appropriately. Since the analysis of the three cases is identical, we
demonstrate this in the case α1 = 1, α j is not 1, ρ or −2n for j = 2, . . . , r . For x not
a prime power, Lemma 2.1 gives

∑

ρ

xρ−1

ρ − 1
= η0(1)+ log x +

∞∑

n=1

x−2n−1

2n + 1
−

∑

n≤x

�(n)

n
.

Thus, modifying the previous argument for α1 as above, we get

∑

ρ

A(ρ)

B(ρ)
xρ +

∞∑

n=1

A(−2n)

B(−2n)

(
1

x

)2n

− x
∑

i �=1

λi

1− αi

= −
∑

i

λi x
αi

(
∑

n≤x

�(n)

nαi

)

−
∑

i �=1

λi x
αi
ζ ′

ζ
(αi)+ λ1xη0(1)+ λ1 x log x .

This completes proof of the main theorem.

5. Connections with other L-series

As noted in [GMR1], our study of series of the form (3) can be expanded to the realm
of the Selberg class. Before amplifying the general setting, let us focus on two specific
cases.

If χ is a non-principal Dirichlet character mod q which is even ( that is χ(−1) =
1), then our earlier discussion extends mutatis mutandis to this case also with only
one minor modification. Since L(s, χ) does not have a pole at s = 1, the analog of
Lemma 2.1 becomes

∑

n≤x

�(n)χ(n)

ns
= − L ′

L
(s, χ)−

∑

ρ

xρ−s

ρ − s
+
∞∑

n=1

x−2n−s

2n + s
(25)

where the second sum on the right hand side is over the non-trivial zeros of L(s, χ).
Our main theorem modified to deal with this case becomes

∑

ρ

A(ρ)

B(ρ)
xρ +

∞∑

n=1

A(−2n)

B(−2n)

(
1

x

)2n

= −
∑

i

λi x
αi

(
∑

n≤x

�(n)χ(n)

nαi

)

−
∑

i

λi x
αi

L ′

L
(αi , χ),
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if x is not a prime power. As noted earlier, if x is a prime power, the sum

∑

n≤x

�(n)χ(n)

ns

must be replaced by
∑

n<x

�(n)χ(n)

nαi
+ 1

2

�(x)

xαi
χ(x).

Since the method of contour integration employed in the proof of Lemma 2.1 goes
through with little change, we leave the details to the reader.

If χ is an odd character, the analogous derivation needs some modification but
only in one step. The trivial zeros of L(s, χ) are now at the negative odd integers
−1, −3, −5, . . . so that the last term on the right hand side of (25) changes to

∞∑

n=0

x−2n−1−s

2n + 1+ s

and the analog of Theorem 1.3 becomes

∑

ρ

A(ρ)

B(ρ)
xρ +

∞∑

n=1

A(−2n − 1)

B(−2n − 1)

(
1

x

)2n+1

= −
∑

i

λi x
αi

(
∑

n≤x

�(n)χ(n)

nαi

)

−
∑

i

λi x
αi

L ′

L
(αi , χ),

for x > 1, x not a prime power. If x is a prime power, we need to make the same
modification as we made earlier.

These theorems extend smoothly to elements of the Selberg class. We will not
adumbrate the properties of this class here, but refer the reader to the exposition in
[GMR1] where the authors study sums of the form

∑

ρ

A(ρ)

B(ρ)
xρ

when ρ runs over the non-trivial zeros of a fixed element F of the Selberg class. The
essential point to note is that the nature of the second term in the appropriate analogue
of (25) is determined by the trivial zeros of F(s). These sums will often not be of the
form

∞∑

n=1

A(−2n)

B(−2n)

(
1

x

)2n

,
∞∑

n=1

A(−2n − 1)

B(−2n − 1)

(
1

x

)2n+1

or
∞∑

n=1

A(−n)

B(−n)

(
1

x

)n

(26)

because these terms are determined by the nature of 	-factors in the functional
equation of F(s). Only in special cases does the second term on the left-hand side
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of the analogue of (25) take such a simple form. For instance, if the 	-factor in the
functional equation is

	
( s

2

)
, 	

(
s + 1

2

)

or 	(s),

then the second term on the left-hand side is one of the expressions in (26) respectively.
We have already seen the first two cases of these 	-factors arising in the case of

L(s, χ) with χ even or odd. The case of 	(s) emerges if F(s) is the L-function
attached to a Hecke eigenform. This case leads to an expression of the form

∞∑

n=1

A(−n)

B(−n)

(
1

x

)n

.

In these formulas, we have assumed that x > 1. One could analyze the case x → 1+
and derive corresponding results.

As noticed in [GMR1], one can investigate the case 0 < x < 1 of the series

∑

ρ

A(ρ)

B(ρ)
xρ

in a similar manner. By the method used in the proof of Lemma 2.1, one can show
that if s �= 0, 1, 3, 5, . . . and 1/x is not a prime power, then

∑

n≤1/x

�(n)

n1−s
= −ζ

′

ζ
(1− s)+ x−s

s
+

∑

ρ

xρ−s

ρ − s
+
∞∑

n=1

x2n+1−s

2n + 1− s
.

An appropriate adjustment of the left hand side is needed if 1/x is a prime power.
Clearly, similar results can be derived for elements of the Selberg class.

What these results suggest is a method (perhaps) to analyze relations that may
exist among special values of logarithmic derivative of the Riemann zeta function.
If we consider (say) L(s, χ) with χ even, then one could explore any rational linear
combination of special values of the logarithmic derivatives of L(s, χ) as χ varies.
These investigations we relegate to a future occasion.

6. Concluding Remarks

Our study here opens a new line of investigation regarding on the one hand sums of
the form (1) and generally (2) relating them to sums of the form (3) expressing a
functional relation. On the other hand, this relation involves linear forms in logarithms
as well as the η j -coefficients of a general kind.

Scattered throughout the literature are various (seemingly unrelated) investigations
and it is hoped that these disparate researches can be brought into a cohesive unity
that will illuminate our understanding about these sums and perhaps shed some light
on the Riemann hypothesis.

To give one example of related results in the literature, we state here a fascinating
formula found by Ihara, Murty and Shimura [IMS].
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Let K be an algebraic number field and write

ζK (s) =
∞∑

n=1

an

ns

for its Dedekind zeta function. Let χ be a primitive Dirichlet character. Modifying the
(confusing) notation of [IMS], we define

L K (s, χ) =
∞∑

n=1

anχ(n)

ns
.

It is well-known that L K (s, χ) extends to an entire function if χ �= χ0, the principal
character. Define γK to be the constant term divided by the residue of the Laurent
expansion of ζK (s) at s = 1. Set

γ ∗K ,χ =
⎧
⎨

⎩

γK + 1, if χ = χ0,

L ′K (1,χ)
L K (1,χ)

if χ �= χ0,

and define for x > 1,

�K ,χ (x) := 1

x − 1

∑

N(p)k≤x

(
x

Npk
− 1

)

χ(Np) log(Np).

Then, for x > 1,

γ ∗K ,χ = δχ log x −�K ,χ (x)+ 1

x − 1

∑

ρ

xρ − 1

ρ(1− ρ)

+ a

2
F1(x)+ a′

2
F3(x)+ r2 F2(x),

where δχ = 1 or 0 depending on whether χ = χ0 or not, ρ runs over non-trivial
zeros of L K (s, χ), a is the number of real places of K where χ is unramified, a′ is
the number of real places of K where χ is ramified, r1 = a + a′ (resp. r2) is the total
number of real (resp. complex) places of K and

F1(x) = log
x + 1

x − 1
+ 2

x − 1
log

x + 1

2
,

F3(x) = log
x2

x2 − 1
+ 2

x − 1
log

2x

x + 1
,

and

F2(x) = log
x

x − 1
+ log x

x − 1
,

see [IMS, Theorem 1]. This formula can be deduced by our general methodology
discussed in earlier sections of this paper. The novelty here is the meaning of the
expression on the right hand side.
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Related to this, the authors in [IMS] also derive the following. Let dK be the
discriminant of K , Fχ be the conductor of χ and put dχ = |dK |N(Fχ ). Let

αK ,χ = 1

2
log dχ

and

βK ,χ −
(

a + r2

2

)

(γ + log 4π)−
(

a′ + r2

2

)

(γ + logπ).

Then,

γ ∗K ,χ =
∑

ρ

1

1− ρ − αK ,χ − βK ,χ .

In particular, one deduces that for x > 1, x algebraic,

γ ∗K ,χ −
1

x − 1

∑

ρ

xρ − 1

ρ(1− ρ)

is a linear form in logarithms of algebraic numbers. Baker’s theory implies that this is
a transcendental number if it is non-zero, related to the theme of [GMR1].

This raises a series of cognate questions, the foremost being the non-vanishing of
L ′K (1, χ). Indeed, in [MM], it was shown that if K = Q and χ is the quadratic
character associated to the imaginary quadratic field Q(

√−d) (d > 0), such that
L ′(1, χ) = 0, then eγ is transcendental. The vanishing or non-vanishing of L ′(1, χ)
has received very little attention in the literature and these remarks indicate that the
problem is worthy of serious study.

We also signal the importance of related themes discovered by A. P. Guinand [G]
and his doctoral student I. C. Chakravarty [C]. Special cases of the functional relation
we derived in this paper can be found in [G], where curiously the author assumes the
Riemann hypothesis. They also study the “secondary zeta-functions” defined as

∑

γ>0

γ−s,

where γ runs through the imaginary parts of the non-trivial zeros of ζ(s). They derive
analytic continuation and functional equation of such series.

These researches reveal that there are further patterns to explore and embrace into
a larger theory. We relegate this to the future.
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Abstract. We prove that the supnorm of an L2-normalised Siegel cusp form of weight k,
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1. Introduction

Sup-norm bounds for automorpic forms on various arithmetic subgroups of GL(n,R)
has been a quite active area of research. It is a classical problem to estimate the
sup-norm of a holomorphic cusp form or a Maass form on a congruence subgroup of
SL(2,Z) with respect to their respective spectral paramaters, and several results are
available in the literature, see e.g. the introduction in [1]. In this paper, motivated by
V. Blomer’s work [1], we consider this question in the case of a Siegel cusp form F
of degree 2 and weight k. More precisely, we are interested in estimating the quantity

‖F‖∞ := sup
Z=X+iY∈Sp(2,Z)\H2

(det Y )k/2|F(Z)|,

when F is the Saito-Kurokawa lift (see e.g., [2]) of an elliptic Hecke eigenform
on SL(2,Z) of weight 2k − 2. The reason for such a restriction is due to the fact
that Fourier coefficients of “non-lifts” are harder to work with; this is discussed
in particular in [1]. In this paper we establish a bound for ‖F‖∞ when F is a
Saito-Kurokawa lift.

V. Blomer’s approach to this problem [1] was direct, and he estimated the size of
‖F‖∞ by bounding absolutely the Fourier expansion of F . In this way, the argument
was similar to Xia [6]. Crucial was the fact that the Fourier coefficients of F can be
conveniently written in terms of that of the lifted form; along with the fact that there
is also a relation among the corresponding L2-norms. This, along with some careful
estimates of certain sums over symmetric matrices yielded the bound

‖F‖∞ �ε k3/4+ε, (1.1)

223
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conditional on the Generalised Lindelöf Hypothesis for L(1/2, f × χD) for all
negative fundamental discriminants D. Also there exist Maass lifts where (1.1) is the
correct order of magnitude (cf. [1, Thm. 1]). Let us point out here (see Remark 1.2
for more details) that if instead of the Lindelöf Hypothesis, one uses the current best
(hybrid) sub-convex bound for these L-values (see (2.29)), then one obtains the bound

‖F‖∞ �ε k5/4+ε. (1.2)

This wasn’t worked out in [1], so we do it in Remark 2.5.
In this article, we take a somewhat different approach, which is also direct, but

we work with the Fourier-Jacobi expansion of F . Since F is determined by its first
Fourier-Jacobi coefficient φ1, we can reduce the problem to φ1. We then prove a
suitable upper bound for the supnorm of (the � J -invariant function associated to) φ1

via its theta-decomposition and using its relation to the lifted form on SL(2,Z). This
makes our calculations much simpler than that in [1]. Our result is the following.

Theorem 1.1. Let F ∈ S2
k be a (L2-normalised) Saito-Kurokawa lift of an eigenform

on SL(2,Z). Then its L∞-norm satisfies

‖F‖∞ �ε k17/12+ε.

Of course this bound is weaker than what one obtains from (1.2); but the main point
of this article is to note that our method seems to have the potential to generalise and
give at least a polynomial bound for the L∞-norm of a Siegel cusp form of any degree.
This is under preparation (possibly in conjunction with other methods) and the details
would appear elsewhere. We make some remarks on this later, see Remark 2.4.

Remark 1.2. (1) As mentioned in [1], using a Bergman kernel for Sp(2,Z) it follows
that over fixed compacts sets �, one gets the “convexity” or trivial bound

‖F |�‖∞ � k3/2.

So even our method, which does not restrict to compact sets, beats this bound.
(2) Perhaps an explanation of a better bound this way is linked to the possible

cancellation inside each Fourier-Jacobi coefficient of F .
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2. Proof of Theorem 1.1

Let J o
k,m denote the space of cusp forms of weight k and index m (see [2] for details).

We start from the expression

F(Z) =
∑

m≥1

(Vm φ)(τ, z)e(mτ ′), (e(z) := e2π i z) (2.1)

where φ ∈ J o
k,1 is a Hecke eigenform and for m ≥ 1 the Hecke operators Vm are

defined as maps from J o
k,1 to J o

k,m by

Vmφ(τ, z) = mk−1
∑

(
a b
c d

)
∈�1\Am (Z)

(cτ + d)−kem

(
−cz2

cτ + d

)

φ

(
aτ + b

cτ + d
,

mz

cτ + d

)

,

(2.2)
where we have put

Am(Z) = {γ ∈ M2(Z) | det(γ ) = m}.
Choosing convenient upper triangular coset representatives, one can write

V
φ(τ, z) = 
−1
∑

a|
, ad=


∑

b mod d

akφ

(
aτ + b

d
, az

)

(2.3)

Let us write Z = X + iY ∈ F := Sp(2,Z)\H2, so in particular Y is
Minkowski-reduced. Throughout the paper, we would use the decomposition

Z =
(
τ z
z τ ′

)

,

with u + iv = τ, τ ′ = u′ + iv ′ ∈ H and z = x + i y ∈ C. Further, let us set
|Y | = det(Y ). It is also convenient to introduce the parameter t by defining

t := |Y |/v = v ′ − y2/v. (2.4)

Then it follows from reduction theory that v, v ′ ≥ √3/2 (cf. [3]). Moreover, for the
same reason,

t = |Y |/v 	 v ′ 	 1.

For Z ∈ F we use (2.1) to estimate:

|Y |k/2|F(Z)| ≤ |Y |k/2
∞∑

m=1

|Vm φ|e−2πmv ′

= tk/2
∞∑

m=1

(vk/2e−2πmy2/v |Vm φ|)e−2πm(v ′−y2/v)

= tk/2
∞∑

m=1

Ṽm φ e−2πmt,
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where for any ψ ∈ Hol(H×C), we put

ψ̃ := vk/2e−2πmy2/v |ψ(τ, z)|. (2.5)

If ψ ∈ J o
k,m , then ψ̃ is a bounded � J invariant function. Moreover for ψ ∈ J o

k,m as
above, we put

‖ψ‖∞ := sup
(τ,z)∈� J \H×C

ψ̃. (2.6)

Therefore we can say that

|Y |k/2|F(Z)| � tk/2
∞∑

m=1

‖Vm φ‖∞ e−2πmt. (2.7)

Our next task is to estimate the quantity ‖Vm φ‖∞ in terms of m and ‖φ‖∞. With
the setting of (2.3) in mind, we compute for φ ∈ J o

k,1, the following.

φ̃

(
aτ + b

d
, az

)

=
(a

d

)k/2
vk/2e−2πda2 y2/av

∣
∣
∣
∣φ

(
aτ + b

d
, az

)∣
∣
∣
∣

=
(a

d

)k/2
vk/2e−2πmy2/v

∣
∣
∣
∣φ

(
aτ + b

d
, az

)∣
∣
∣
∣ . (2.8)

Remark 2.1. If one could establish an explicit bound of the form

‖Vm φ‖∞ �ε ka+εmk/2−b+ε‖Vm φ‖2,
for some a, b with the implied constant depending only on ε, then using the formula
(cf. [4])

‖Vm φ‖22 = mk−3/2
∑

t |m
K (t)t−1/2‖φ‖22, (K (t) = t

∏

p|t
(1+ 1/p))

we could perhaps bound ‖Vm φ‖∞ better.

Then we can estimate, upon using (2.5) and (2.8) that

Ṽm φ(τ, z) ≤ m−1vk/2e−2πmy2/v
∑

a|m,ad=m

∑

b mod d

ak

∣
∣
∣
∣φ

(
aτ + b

d
, az

)∣
∣
∣
∣

≤ m−1
∑

a|m

∑

b mod d

ak
(

d

a

)k/2 ∣
∣
∣
∣φ̃

(
aτ + b

d
, az

)∣
∣
∣
∣

≤ mk/2−1
∑

a|m
m/a · sup

(τ,z)∈� J \H×C
φ̃

� mk/2 log(m) · ‖φ‖∞, (2.9)
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where the implied constant is absolute. This gives our desired relations between the
sup-norms for every m ≥ 1:

‖Vm φ‖∞ � mk/2 log(m) · ‖φ‖∞.
We now turn back to our original goal. Let us note that the function f (x) :=

xk/2+εe−2πxt increases upto x = ϒ := k/2+ε
2π t and decreases thereafter. From (2.7)

and (2.9) we therefore get, using the fact that
∑∞

m=1 f (m) ≤ ∫∞
0 f (t)dt + 2 f (ϒ)

when ϒ ≥ 1 (see [6]), that

|Y |k/2|F(Z)|

�ε tk/2
( ∞∑

m=1

mk/2+ε e−2πmt

)

· ‖φ‖∞

�ε tk/2
(∫ ∞

0
xk/2+εe−2π tx dx + 2

(
k/2+ ε

2π t

)k/2+ε
e−k/2−ε

)

· ‖φ‖∞

�ε tk/2
(

(2π t)−k/2−1−ε�(k/2+ 1+ ε)+ 2

(
k/2+ ε

2π t

)k/2+ε
e−k/2−ε

)

· ‖φ‖∞

�ε

(
�(k/2+ 1+ ε)

t
+ (k/2+ ε)k/2+εe−k/2−ε

)

· ‖φ‖∞
(2π)k/2

�ε
�(k/2+ 1+ ε)

(2π)k/2
· ‖φ‖∞ (since t	 1). (2.10)

The case ϒ < 1 is similar, and we get the same bound as (2.10) using the inequality∑∞
m=1 f (m) ≤ ∫∞

0 f (t)dt + f (1) and f (1) ≤ f (ϒ).
We now turn to bounding ‖φ‖∞ in terms of k and ‖φ‖2. For this, we would appeal

to the theta decomposition of φ and with some modifications, reduce the question to
its theta-components, and then use a recent result of R. Steiner [5] on bounds for the
sup-norm of half-integral weight Hecke eigenform.

Let us recall the theta-decomposition of φ.

φ(τ, z) = h0(τ )θ0(τ, z)+ h1(τ )θ1(τ, z),

where h j ∈ Sk−1/2(�(4)) and θ0, θ1 are certain Jacobi-theta series defined by (with
μ ∈ {0, 1})

θμ(τ, z) =
∑

r∈Z
r≡μ mod 2

q
r2
4 ζ r . (q = e(τ ), ζ = e(z))

The Eichler-Zagier map acting on φ ∈ J o
k,1 (which is Hecke equivariant) gives rise to

a form h ∈ S+k−1/2(�0(4)). Explicitly,

h(τ ) = h0(4τ )+ h1(4τ ).
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Now from the transformation properties of φ, (h0, h1) satisfy the following
functional equation:

h0(−τ−1) = (−2i)−k(−2iτ )k−1/2(h0(τ )+ h1(τ )),

h1(−τ−1) = (−2i)−k(−2iτ )k−1/2(h0(τ )− h1(τ )).

Our aim is to express both h0 and h1 in terms of h. Therefore by changing τ �→ 4τ ,
we can write

h0|W4(τ ) = i k2k−1h(τ ), h1|W4(τ ) = i k2k−1(2h0(4τ )− h(τ )).

Here we use the same normalisation for W4 as in [5]:

W4 =
((

0 −1/2
2 0

)

, (−2iτ )k−1/2
)

Using the fact that W4 is an involution, we immediately get

h0(τ ) = i k2k−1h|W4(τ ),

h1(τ ) = h(τ/4)− i k2k−1h|W4(τ ). (2.11)

Let us put, for g ∈ Sk−1/2(�0(4)), the quantity

g̃(τ ) := vk/2−1/4|g(τ )|.
We can then estimate

vk/2e−2πy2/v |φ(τ, z)|
≤ vk/2−1/4|h0(τ )|v1/4e−2πy2/v |θ0(τ, z)| + vk/2−1/4|h1(τ )|v1/4e−2πy2/v |θ1(τ, z)|

(2.12)

� max{2kv1/4 · h̃|W4(τ ), v
1/4h̃1(τ )}

(
e−2πy2/v (|θ0(τ, z)| + |θ1(τ, z)|)

)

� 2kv1/4 max{h̃|W4(τ ), h̃(τ/4)}G(τ, z); (2.13)

where we have put

G(τ, z) = e−2πy2/v (|θ0(τ, z)| + |θ1(τ, z)|). (2.14)

Let us now show that G above is a bounded function for all (τ, z) ∈ FJ , where FJ

denotes the standard fundamental domain for the action of the Jacobi group on H×C.
We note that for (τ, z) ∈ FJ we may assume that v ≥ √3/2 and 0 ≤ y ≤ v . Thus,

G(τ, z) ≤
∑

r∈Z

e−2πv(r2v/4−|r|y+y2/v2)

≤ 1+ 2
∑

r≥1

e−2πv(|r|/2−y/v)2 .
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We split the r-sum into two parts:

(A) r ≥ 1, r > 4|y|/v, (B) r ≥ 1, r ≤ 4|y|/v.
In case (A), we have |r − 2y/v | ≥ r/2 whence

∑

r>4|y|/v
e
−πvr2

8 �
∑

r≥1

e−π
√

3r2
16 � 1.

In case (B), the number of summands is absolutely bounded since 2|y|/v ≤ 2, and
the sum is� 1.

Let F4 denote the standard fundamental domain of �0(4) on H. We note in the
passing that we actually would work in the context of elliptic cusp forms (as in other
works on this topic, e.g. [5]) on a supersets of F4 of the form (of translates of suitable
Siegel sets)

S(c) := S(c) ∪W4(S(c)) ∪ B4(S(c)) (c = √3/8,
√

3/32);
where for c > 0, S(c) := {z ∈ H|�(τ ) > c} and B4 =

((
1 0
2 1

)
, (−i(2τ + 1))k−1/2

)
.

Thus in the following, we work with S(c)with c = √3/8,
√

3/32, the ensuing bounds
are exactly the same in the k-aspect, only the implied absolute constants involved
may change for these different values of c. This is done to accommodate the function
h̃(τ/4) from (2.13).

Following Steiner [5] we would now divide our argument in two regions (we would
choose η > 0 appearing below, later):

(I) F+ = {τ ∈ F4|v 	 kη}, and
(II) F−4 = {τ ∈ F4|v � kη}.

In the region (I), we argue using the Fourier expansion. Note however that the
quantity θ̃0 (cf. (2.5)) blows up, so we try to compensate this by leveraging with the
bounds obtained in [5]. To this end, let us quote from [5, Prop. 6 and 7] the following
statements, stated in a way that is convenient for us.

Proposition 2.2 ([5]). Let k ∈ 1/2 + Z and k ≥ 5/2. For an L2-normalised Hecke
eigenform f ∈ S+k (�0(4)) we have the following. Assume the bound L(F, χ, 1/2)�
kα+εqβ+ε , where F ∈ S2k−1 denotes the (Hecke normalised) Shimura lift of f and χ

is a real primitive quadratic character modq. If β > 0, then for all v ≥
√

3
8 (actually

in S(√3/8) and hence also in any S(c) with c ≥ √3/8 being absolute) one has the
following bounds:

max{ f̃ , f̃ |W4} �ε
k1/4+α/2+β/2+ε

v1/2+β/2 (1+ vk−1/2). (2.15)

Proposition 2.3 ([5]). Let all the hypotheses of Proposition 2.2 hold. Then for k ≥
β > 0 and all v > 12k

π one has the bound:

max{ f̃ , f̃ |W4} �ε
k1/4+α/2+β/2+ε

v1/2+β/2 (1+ k1/2 exp(−πv)). (2.16)
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We are going to use Proposition 2.2 and Proposition 2.3 in the following way. Let
g denote any of the quantities h̃, h̃|W4. Then under the assumption that η > 0, we
infer (respectively) from (2.15) and (2.16) the following bounds (noting that ‖h‖2 �
‖h|W4‖2, in fact they are same upto some absolute constant).

v1/4̃g�ε

⎧
⎨

⎩

k1/4+α/2+β/2+ε
v1/4+β/2 (1+ vk−1/2)‖h‖2 (kη � v � k)

k1/4+α/2+β/2+ε
v1/4+β/2 (1+ k1/2 exp(−πv))‖h‖2 (k � v)

. (2.17)

For simplicity, from now on let us use the current best possible values of (α, β)
from the subconvexity results of [7] and put (α, β) = (1/3, 1/3). From (2.17), it then
follows that

v1/4̃g�ε

⎧
⎨

⎩

k2/3+ε · ‖h‖2 (kη � v � k)

k1/6+ε · ‖h‖2 (k � v)
. (2.18)

Then we record:

v1/4̃g�ε k2/3+ε · ‖h‖2 (kη � v). (2.19)

For the region (II), we use another bound from [5, (3.24)] which says that for a
certain parameter � = kγ one has

v1/2̃g2 � k1+ε�ε
(
�−1 + vk−1/2 +�2k−1/2 +�6k−1

)
v1/2‖h‖2

� k1+η/2+ε(k−γ + kη−1/2 + k2γ−1/2 + k6γ−1)‖h‖2
� k5/4+ε‖h‖2; (2.20)

upon choosing η = 1/2 and γ = 1/6.
In all (using (2.19), (2.20)), we have proved so far that

v1/4̃g� k2/3+ε‖h‖2. (2.21)

Thus from (2.12), (2.13), (2.21) and the fact that G(τ, z) (cf. (2.14)) is bounded in
FJ we arrive at the bound:

‖φ‖∞ � k2/3+ε2k‖h‖2. (2.22)

Let us also note that to arrive at (2.13), we have tacitly used the fact that v1/4h̃(τ/4)
satisfies the same bound as in (2.21); since (2.21) in fact holds for all τ ∈ S(√3/8)
and also for all τ ∈ S(√3/32).

Furthermore, we have the following relation between the Petersson norms of φ and
h (see [2]):

‖φ‖2 = 2k−3/2‖h‖2. (2.23)

Therefore comparing (2.22) and (2.23) we get

‖φ‖∞ � k2/3+ε‖φ‖2. (2.24)



On the Supnorm of Maass Lifts 231

We now recall the last piece of information about the relation between the Petersson
norms of φ and F (cf. [4, corollary to Thm. 2]):

‖φ‖2 = π k/231/22k+1/2

|L(k, f )|1/2 �(k)1/2 · ‖F‖2, (2.25)

where f ∈ S2k−2 is the Shimura lift of h. Note that one has L(k, f )	 1 since s = k
falls within the region of absolute convergence of L(s, f ).

Substituting the formula (2.25) in the inequality (2.24) we get

‖φ‖∞ � k2/3+επ k/22k

�(k)1/2
· ‖F‖2. (2.26)

If we now go back to (2.10), and use the bound (2.26) for ‖φ‖∞ there, we finally
obtain (since ‖F‖2 = 1)

‖F‖∞ � k2/3+επ k/22k�(k/2+ 1+ ε)
2k/2π k/2�(k)1/2

� k2/3+3/4+ε2k

2k/2 · 2k/2

� k17/12+ε. (2.27)

This finishes the proof of Theorem 1.1. �
Remark 2.4. We believe that in the same vein, one could prove a polynomial bound
for the sup-norm of any Siegel cusp form of degree n. One would appeal to the
Fourier-Jacobi coefficients and bound them via their theta-components. Of course,
here the situation would be much more complicated as there is no ‘parametrisation’ by
a single half-integral weight newform like h in this paper; nevertheless with enough
work a polynomial bound is expected to be obtained in this fashion. Its another matter
to improve this bound further.

Remark 2.5. We wish to briefly indicate how to obtain the bound ‖F‖∞ � k5/4+ε
(cf. (1.2)) for F being L2-normalised, which was mentioned in the introduction.
We start from section 4 of [1] and note that with our (which is the same as in [5])
normalisation,

a(T ) =
∑

d|c(T )
dk−1ch(det 2T /d2),

where we denote by h ∈ S+k−1/2(4), the half-integral newform in Kohnen’s plus space
of level 4 and c(T ) denotes the content of T . It is well-known (see e.g., [2]) that
cφ(|D|) = ch(|D|) for all discriminants D < 0 and that φ �→ h is an isomorphism
(an isometry with proper normalisation). Moreover, from [7], we state the following
bound for the Fourier coefficients ch(m):

ch(m)�ε
(4π)k/2

�(k − 1/2)1/2
· kα/2+ε · m k−3/2+β

2 ‖h‖2 (2.28)
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where (α, β) are the exponents of a subconvex bound in the k and D aspect of the
central value of the L-function L(1/2, f × χD) with D fundamental, i.e.,

L(1/2, f × χD)�ε kα+ε|D|β+ε. (2.29)

Note that the inequality (4.1) in [1] now becomes (using (2.28), (2.29), (2.23) and
(2.25))

a(T )� (det 2T )
k−3/2+β+ε

2 c(T )1/2−β+ε · (2π)
k

�(k)
· kα/2+1/4+ε · ‖F‖2.

Let us note here that the exponents α/2 and 1/4 in k both come from the bound (2.28).

In particular the exponent 1/4 comes from the ratio �(k)1/2

�(k−1/2)1/2
. Further another factor

of �(k)1/2 comes from (2.25).
Putting this bound into the Fourier expansion of F with the choice (α, β) =

(1/3, 1/3) from [7], and proceeding as in [1] leads us to the bound

‖F‖∞
‖F‖2 �

(4π)k

�(k)
· k5/12+ε ∑

T

c(T )1/6+ε

(det T )7/12−ε (det T Y )k/2e−2π tr(T Y )

� (4π)k

�(k)
· k5/12+ε ∑

d

1

d1−ε
∑

T

(det T Yd)
k/2e−2π tr(T Yd )

(det T )7/12−ε

� k5/12+1/2+ε ∑

d

1

d1−ε
∑

T Yd∈X

(det Yd)
7/12−ε

(det T Yd)7/12−ε

� k11/12−7/6+ε
{

sup
Y∈Y

(det Y )7/12−ε ∑

T Y∈X
1

}

. (2.30)

From the definition of Y and X (loc. cit.) it follows easily that the quantity in {· · · }
is bounded by k3/2+ε (see the last display in the proof of [1, Lemma 4], one has to
multiply it with the factor det Y 7/12−ε instead of det Y 3/4), so our claim follows since
11/12− 7/6+ 3/2 = 15/12 = 5/4.

Remark 2.6. Just putting in a bound for ch(m) into the Fourier expansion of φ brings
to us the factor of v3/4−β/2. To avoid this, we are forced to choose β = 3/2, and the
ensuing bounds are, not surprisingly, very bad.

Remark 2.7. It may be possible to use a Bergman kernel function on J o
k,m and carry

out Steiner’s arguments in this setting. Work is in progress on this and the related
problem in the context of Siegel cusp forms, as mentioned in the introduction.
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1. Introduction

Let p be an odd prime and E an elliptic curve defined over a number field F . The
fine Selmer group of the elliptic curve is a much studied object in Iwasawa theory
and occurs in the formulation (and proof) of the Iwasawa main conjecture (see [23,
24, 40]). Coates and the second author undertook a systematic study of the fine
Selmer group in [6], where several important conjectures on the structure of these
groups are postulated, and we briefly recall them. Let Fcyc denote the cyclotomic
Zp-extension of F and R(E/Fcyc) be the fine Selmer group of E over Fcyc.
Coates and the second author conjectured that R(E/Fcyc) is cofinitely generated
over Zp ([6, Conjecture A]). This conjecture is a natural analogue of a classical
conjecture of Iwasawa which asserts that the p-exponent of the class groups in a
cyclotomic Zp-extension grows linearly (see [20, 21]). In fact, there is a very precise
relation between the two conjectures and we refer readers to [6, Theorem 3.4],
[29, Theorem 3.5], [31, Theorem 5.5], [44, Theorem 4.5] and [48, Section 8] for
further discussion on this. In their paper [6], Coates and the second author also
studied the structure of the fine Selmer group over extensions of F whose Galois
group G = Gal(F∞/F) is a p-adic Lie group of dimension larger than 1. Their
conjecture on the structure of the Pontryagin dual of the fine Selmer group of an
elliptic curve over such an extension predicts that the said module is pseudo-null over
the corresponding Iwasawa algebra Zp�G� (see [6, Conjecture B]).
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In this paper, we investigate the structure of the fine Selmer group of an elliptic
curve with complex multiplication. Our approach towards this study is via the Selmer
group which we now describe briefly. For simplicity, we assume in this introduction
that E is an elliptic curve defined over an imaginary quadratic field K which has
complex multiplication given by the ring of integers of K and which has good ordinary
reduction at every prime above p. It follows that the prime necessarily splits in K , say
p = pp. Denote by Kp∞ the Zp-extension of K unramified outside p. A well-known
result of Gillard and Schneps [11, 12, 42] tells us that the p∞-Selmer group over Kp∞
is cofinitely generated over Zp. The aim of this paper is to analyse the consequence of
this result on the structure of the full p∞-Selmer group of the elliptic curve which is
then applied to study the structure of the fine Selmer group of the elliptic curve. Our
main result for the full p∞-Selmer group is as follows (see Theorem 3.6 for a more
refined statement).

Theorem 1.1 (Theorem 3.6). The dual strict Selmer group X (E/K∞) is finitely
generated over Zp�Hp�, where Hp = Gal(K∞/Kp∞).

The above result will be applied to study the fine Selmer group which allows us to
obtain the following.

Proposition 1.2 (Proposition 4.1). The dual fine Selmer group R(E/K∞)∨ has
trivial μG -invariant, where G = Gal(K∞/K ).

Recall from [3, 9] that X (E/K∞) is said to satisfy the MH (G)-conjecture
if X (E/K∞)/X (E/K∞)[p∞] is finitely generated over Zp�H�, where H =
Gal(K∞/K cyc). Our discussion in this paper provides a first instance where the
MH (G)-conjecture and Conjecture A are related.

Proposition 1.3 (Proposition 4.3). Suppose that the MH (G)-conjecture is valid for
X (E/K∞). Then R(E/K cyc)∨ is finitely generated over Zp.

We now describe the plan of the paper. In Section 2, we introduce the strict Selmer
group in the sense of Greenberg [14] and collect certain results on the structure of
these Selmer groups. In Section 3, we turn to the case which interests us in this paper,
namely the complex multiplication situation. Here we combine the results in Section
2 with the result of Gillard and Schneps to prove some results on the structure of
the Selmer group of the elliptic curve. These results are then applied to study the
structure of the fine Selmer group in Section 4. Here we also mention how our result
can be viewed as a weak partial support to Conjecture A of [6]. In Section 5, we
discuss some relation between our result with Conjecture B of [6]. Finally in Section 6,
we record an interesting consequence of Conjecture B which gives a precise relation
between the elliptic units and global units. It appears that this latter observation has
not been explicitly recorded in literature despite being well-known to the experts, and
we therefore felt it worthwhile to do so here.
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2. Selmer groups

Throughout this section, we let p be a prime and F a number field which is further
assumed to have no real primes if p = 2. In this section, we introduce the strict
Selmer groups associated to certain datum in the sense of Greenberg [14]. As a start,
we introduce the axiomatic conditions on our datum which is denoted by

(
A, {Av }v |p

)

and satisfies all of the following four conditions (C1)–(C4).

(C1) A is a cofinitely generated cofree Zp-module of Zp-corank d with a continuous,
Zp-linear Gal(F̄/F)-action which is unramified outside a finite set of primes of
F .

(C2) For each prime v of F above p, there is a distinguished Gal(F̄v/Fv )-submodule
Av of A which is cofree of Zp-corank dv .

(C3) For each real prime v of F , A+v := AGal(F̄v /Fv ) is cofree of Zp-corank d+v .
(C4) The following equality

∑

v |p
(d − dv)[Fv : Qp] = dr2(F)+

∑

v real

(d − d+v )

holds. Here r2(F) denotes the number of complex primes of F .

As is usual in Iwasawa theory, we will need to work with Selmer groups defined
over a tower of number fields. Thus, we need to consider the base change of our datum
which we now do. Let L be a finite extension of F . The base change of our datum(

A, {Aw}w|p, {A+w}w|R
)

over L is given as follows:

(1) A can be viewed as a Gal(F̄/L)-module via restriction of the Galois action.
(2) For each prime w of L above p, we set Aw = Av , where v is a prime of F

below w, and view it as a Gal(F̄v/Lw)-module via the appropriate restriction.
Note that we then have dw = dv .

(3) For each real prime w of L which lies above a real prime v of F , we set
A+w = AGal(F̄v /Fv ) and write d+w = d+v .

We now record the following lemma which gives some sufficient conditions for
equality in (C4) to hold for the datum

(
A, {Aw}w|p, {A+w}w|R

)
over L .
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Lemma 2.1. Suppose that
(

A, {Av }v |p, {A+v }v |R
)

is a datum defined over F. Suppose
further that at least one of the following statements holds.

(i) All the archimedean primes of F are unramified in L.
(ii) [L : F] is odd

(iii) F has no real primes.

Then the datum
(

A, {Aw}w|p, {A+w}w|R
)

obtained by base change satisfies (C1)-(C4).
In particular, we have the equality

∑

w|p
(d − dw)[Lw : Qp] = dr2(L)+

∑

w real

(d − d+w ).

Proof. It remains to verify that (C4) holds for
(

A, {Aw}w|p, {A+w}w|R
)
. Note that if

either of the assertions in (ii) or (iii) holds, then the assertion in (i) holds. Therefore,
to prove the lemma in these cases, it suffices to prove it under the assumption of (i).
We first perform the following calculation

∑

w|p
(d − dw)[Lw : Qp] =

∑

v |p

∑

w|v
(d − dv )[Lw : Fv ][Fv : Qp]

=
∑

v |p
(d − dv)[Fv : Qp]

∑

w|v
[Lw : Fv ]

= [L : F]
∑

v |p
(d − dv )[Fv : Qp]

= d[L : F]r2(F)+ [L : F]
∑

v real

(d − d+v ),

where the last equality follows from the fact that
(

A, {Av }v |p, {A+v }v |R
)

satisfies (C4).
Now if (i) holds, then every prime of L above a real prime (resp., complex prime) of F
is a real prime (resp., complex prime). Therefore, one has [L : F]r2(F) = r2(L) and

[L : F]
∑

v real

(d − d+v ) =
∑

w real

(d − d+w ).

The required conclusion then follows. �

We now define the strict Selmer group associated to our datum following
Greenberg [14]. Let S be a finite set of primes of F which contains all the
primes above p, the ramified primes of A and all the infinite primes of F . Denote
by FS the maximal algebraic extension of F unramified outside S and write
GS(L) = Gal(FS/L) for every algebraic extension L of F which is contained in FS.
Let L be a finite extension of F contained in FS . For a prime w of L lying over S, set

H1
str (Lw, A) =

⎧
⎨

⎩

ker
(
H1(Lw, A) −→ H1(Lw, A/Aw)

)
if w divides p,

ker
(
H1(Lw, A) −→ H1(Lur

w , A)
)

if w does not divide p,
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where Lur
w is the maximal unramified extension of Lw. The (strict) Selmer group

attached to the data is then defined by

Sstr (A/L) := Selstr (A/L) := ker
(

H1(GS(L), A) −→
⊕

w∈S(L)

H1
s (Lw, A)

)
,

where we write H1
s (Lw, A) = H1(Lw, A)/H1

str (Lw, A) and S(L) denotes the set of
primes of L above S. For an infinite algebraic extension L of F contained in FS , we
define Sstr (A/L) = lim−→

L

Sstr (A/L), where the direct limit is taken with respect to the

natural maps, as L varies over finite subextensions of the base field F in the larger
extension L. We write X (A/L) for its Pontryagin dual.

The following important example of a datum satisfying the conditions above will be
used in subsequent discussion in the paper. Assume now for simplicity that F is totally
imaginary. Let E be an elliptic curve defined over F with good ordinary reduction at
all primes of F above p. Then for each prime v of F above p, we have the following
short exact sequence

0 −→ Ê(F̄v)[p∞] −→ E(F̄v )[p∞] −→ Ẽ(F̄v)[p∞] −→ 0,

where Ê(F̄v) (resp., Ẽ(F̄v)) denotes the associated formal group (resp. the reduced
elliptic curve). In this case, our datum will consist of (E[p∞], {Ê(F̄v)[p∞]}v |p). It is
easy to check that the equality in condition (C4) is satisfied. In this example, the strict
Selmer group of E over L will always be denoted by Sstr(E/L).

We return to the general setting. For a given set of data
(

A, {Av }v |p, {A+v }v |R
)
, we

define its (Tate) dual data as follows. For an O-module N , let Tp(N) denote its p-adic
Tate module, i.e., Tp(N) = lim←−

i

N [pi ]. We then set A∗ = Homcts(Tp(A), μp∞).

Similarly, for each v |p (resp., v real), we set A∗v = Homcts(Tp(A/Av ), μp∞)
(resp., (A∗)+v = Homcts(Tp(A/A+v ), μp∞)). It is an easy exercise to verify that(

A∗, {A∗v }v |p, {(A∗)+v }v |R
)

satisfies the conditions (C1)–(C4) as defined in the
beginning of the section. Therefore, we can attach strict Selmer groups to this dual
data which will be denoted by Sstr (A∗/L). The Pontryagin dual of Sstr (A∗/L) is
then denoted by X (A∗/L).

Returning to the elliptic curve example given above, it follows from the Weil pairing
that the datum (E[p∞], {Ê(F̄v)[p∞]}v |p) is self-dual in the sense that its dual datum
(as defined in the preceding paragraph) coincides with itself. In Section 3, when the
elliptic curve E has complex multiplication, we will attach another datum to E which
is not self dual.

For now, we continue with our discussion in the general context. As a start, we
recall the notion of the μG-invariant. Let G be a pro-p group with no p-torsion and M
a finitely generated Zp�G�-module. It then follows from [19, Proposition 1.11] (see
also [46, Theorem 3.40]) that there is a Zp�G�-homomorphism

ϕ : M[p∞] −→
s⊕

i=1

Zp�G�/pαi ,
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whose kernel and cokernel are pseudo-null Zp�G�-modules, and where the integers
s and αi are uniquely determined. The μG -invariant of M is then defined to be
μG(M) =∑s

i=1 αi . We are now in a position to state the following.

Proposition 2.2. Let F∞ be a pro-p-extension of F which is contained in FS with
Galois group G = Gal(F∞/F) being a compact p-adic Lie group with no p-torsion.
Let n be a fixed arbitrary integer. Also, suppose that for every prime v of F in S, the
decomposition group of G at v has dimension ≥ 1. Then we have

μG
(
X (A/F∞)/pn) = μG

(
X (A∗/F∞)/pn)

.

Proof. The proof is similar to that in [30, Proposition 4.1.3] (also see the proof of
[14, Theorem 2]). Although in these citations, the extensions considered are those
containing the cyclotomic Zp-extension, it has been noted in [30, Remark 4.1.5] that
the same proof carries over as long as for each prime v ∈ S, the decomposition
group of Gal(F∞/F) at v is of dimension 1 which follows from the hypothesis of the
proposition. �

Corollary 2.3. Retain the setting of the preceding proposition. Then X (A/F∞) is
a finitely generated torsion Zp�G�-module with trivial μG-invariant if and only if
X (A∗/F∞) is a finitely generated torsion Zp�G�-module with trivial μG -invariant.

Furthermore, in the event that G ∼= Zp, we then have that X (A/F∞) is finitely
generated over Zp if and only if X (A∗/F∞) is finitely generated over Zp.

Proof. By [30, Lemma 2.4.1], a Zp�G�-module M is finitely generated torsion with
trivial μG-invariant if and only if μG

(
M/p

) = 0. The first assertion of the corollary
is now an immediate consequence of this and Proposition 2.2.

On the other hand, when G ∼= Zp, it follows from the structure theorem of
Zp�G�-modules that a Zp�G�-module M is finitely generated over Zp if and only
if μG

(
M/p

) = 0. The second assertion of the corollary is then an immediate
consequence of this. �

To continue, we need to introduce the mod-p strict Selmer group. For each finite
extension L of F contained in F∞, the mod-p strict Selmer group is defined by

Sstr (A[p]/L) = ker
(

H1(GS(L), A[p]) −→
⊕

w∈S(L)

H1(Lw, Dw[p])
)
,

where Dw = A/Aw or A according as w divides p or not. Write Sstr(A[p]/F∞) =
lim−→

L

Sstr (A[pn]/L). We can now record the following theorem which refines [33,

Theorem 5.2].

Theorem 2.4. Let F∞ be a pro-p-extension of F which is contained in FS with Galois
group G = Gal(F∞/F) being a compact p-adic Lie group with no p-torsion. Also,
suppose that for every prime v of F in S, the decomposition group of G at v has
dimension ≥ 1.
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Then X (A/F∞) is a finitely generated torsion Zp�G�-module with trivial
μG -invariant if and only if H2(GS(F∞), A[p]) = 0 and we have an exact sequence

0 −→ Sstr(A[p]/F∞) −→ H1(G S(F∞), A[p]) −→
⊕

w∈S(F∞)
H1(F∞,w, Dw[p]) −→ 0.

To prepare for the proof of the theorem, we need a few preparatory lemmas. As a
start, we have the following control theorem.

Lemma 2.5. Retain the assumptions of Theorem 2.4. The map

Sstr (A[p]/F∞) −→ Sstr (A/F∞)[p]

has kernel and cokernel which are cotorsion Fp�G�-modules.
In particular, Sstr (A[p]/F∞)∨ is torsion over Fp�G� if and only if X (A/F∞) is a

finitely generated torsion Zp�G�-module with trivial μG -invariant.

Proof. The cotorsionness of the kernel and cokernel follows from an argument
similar to that in [9, Theorem 4.2], noting that we make use of the hypothesis that
the decomposition group of G at v has dimension ≥ 1. It then follows from this that
Sstr (A[p]/F∞)∨ is torsion over Fp�G� if and only if X (A/F∞)/p is torsion over
Fp�G� (noting that X (A/F∞)/p is the Pontryagin dual of Sstr (A/F∞)[p]). The latter
is equivalent to saying that X (A/F∞) is a finitely generated torsion Zp�G�-module
with trivial μG-invariant by [46, Remark 3.33] (also see [30, Lemma 2.4.1]). �

We shall write S∗(A∗[p]/F∞) = lim←−
L

(
Sstr(A∗[p]/L)

)
, where L runs though all

the intermediate finite extensions of F in F∞. We first record the following simple
observation comparing this inverse limit of Selmer groups with different sets of
primes.

Lemma 2.6. Let S and T be two finite set of primes of F such that S ⊆ T . Then we
have an injection

S∗S(A∗[p]/F∞) ↪→ S∗T (A∗[p]/F∞),

where S∗Z(A∗[p]/F∞) is the Selmer group defined with local conditions over Z, where
Z = S, T .

Proof. For finite extensions L ⊆ L ′ of F , it follows from [36, Proposition 1.5.5] that
we have the following commutative diagram

H1(GS(L ′), A∗[p])� �

inf
��

cor
�� H1(GS(L), A∗[p])� �

inf
��

H1(GT (L ′), A∗[p])
cor

�� H1(GT (L), A∗[p])

noting that F(A∗[p]) ⊆ FS ⊆ FT . This in turn induces an injection

lim←−
L

H1(GS(L), A∗[p]) ↪→ lim←−
L

H1(GT (L), A∗[p]).
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which fits into the following commutative diagram

0 �� S∗S(A∗[p]/F∞)

��

�� lim←−
L

H1(G S(L), A∗[p])

� �

��

�� lim←−
L

⊕

w∈S(L)

H1(Lw, D∗w[p])

��

0 �� S∗T (A∗[p]/F∞) �� lim←−
L

H1(GT (L), A[p]) �� lim←−
L

⊕

w∈T (L)

H1(Lw, Dw[p])

hence yielding the required inclusion of the lemma. �

Lemma 2.7. Let F∞ be a pro-p-extension of F which is contained in FS with Galois
group G = Gal(F∞/F) being a compact p-adic Lie group with no p-torsion.
Also, suppose that for every prime v of F in S, the decomposition group of G at
v has dimension ≥ 1. We then have that S∗(A∗[p]/F∞) injects into a torsionfree
Fp�G�-module.

Proof. By the definition of S∗(A∗[p]/F∞), we have an exact sequence

0 −→ S∗(A∗[p]/F∞) −→ H1
Iw(F∞/F, A∗[p])

ρ−→
⊕

v∈S

H1
Iw,v (F∞/F, D∗v [p]),

where H1
Iw(F∞/F, A∗[p]) = lim←−

L

H1(GS(F), A∗[p]) and Hi
Iw,v (F∞/F, D∗v [p]) =

lim←−
L

(⊕

w|v
H1(Lw, D∗w[p])

)

. If F∞ is of dimension ≥ 2, then H1
Iw(F∞/F, A∗[p]) is a

torsionfree Fp�G�-module (cf. [38, Remark before Proposition 3.4] or
[45, Theorem 8.4]) and so the conclusion follows immediately in this case.

It remains to verify the lemma when F∞/F is a 1-dimensional p-adic Lie
extension. By Lemma 2.6, we may assume that S contains a prime of F outside p.
Furthermore, by base-changing F , if necessary, we may assume that all the primes
of S are inert in F∞/F and hence, by abuse of notation, write v for the prime of
F∞ above v . Recall that Jannsen’s spectral sequence (cf. [22, Theorem 1]; also see
[32, Theorem 4.5.1] or [35, Theorem 5.4.5]) is given by

Ei
(

H j (GS(F∞), A∗[p]
)∨)⇒ Hi+ j

Iw (F∞/F, A∗[p]),

where Ei (−) = Exti
Fp�G�

(
−,Fp�G�

)
. From this spectral sequence, we obtain the

following exact sequence

0 −→ A∗(F∞)[p] −→ H1
Iw(F∞/F, A∗[p]) −→ E0

(
H1(GS(F∞), A∗[p]

)∨)
,

where we have made use of the fact that E1
((

A∗(F∞)[p]
)∨) ∼= A∗(F∞)[p].

The local version of Jannsen’s spectral sequence (see [32, Theorem 4.2.2] or
[35, Theorem 5.2.6])

Ei
(
(H j (F∞,v , D∗v [p]))∨

)
⇒ Hi+ j

Iw,v (F∞/F, D∗v [p]).
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then yields an exact sequence

0 −→ D∗v (F∞,v )[p]) −→ H1
Iw,v (F∞/F, A∗[p]) −→ E0

(
H1(F∞,v , D∗v [p])∨

)
.

By [32, Theorem 4.5.1], the two exact sequences fit into the following commutative
diagram

0 �� A∗(F∞)[p]

f

��

�� H 1
Iw(F∞/F, A∗[p])

ρ

��

�� E0
(

H 1
(
G S(F∞), A∗[p]

)∨)

h

��

0 ��
⊕

v∈S

D∗v (F∞,v )[p] ��
⊕

v∈S

H 1
Iw,v (F∞/F, D∗v [p]) ��

⊕

v∈S

E0
(

H 1
v (F∞/F, D∗v [p])∨

)

Since S contains a prime, say v0, outside S, the map f at the v0-component is given
by the natural inclusion A∗(F∞)[p] ↪→ A∗(F∞,v0)[p] and hence f is injective.
This implies that S∗(A[p])/F∞) is contained in ker h which is in turn contained in

E0
(

H1
(
GS(F∞), A∗[p]

)∨). But the latter is a reflexive Fp�G�-module and hence

torsionfree. This establishes the situation of a 1-dimensional p-adic Lie extension.
The proof of the lemma is thus completed. �

We now prove Theorem 2.4.

Proof of Theorem 2.4. Suppose that H2(GS(F∞), A[p]) = 0 and that one has a short
exact sequence

0 −→ Sstr(A[p]/F∞) −→ H1(G S(F∞), A[p]) −→
⊕

w∈S(F∞)
H1(F∞,w, Dw[p]) −→ 0.

Standard Fp�G�-rank calculations (cf. [38, Theorems 3.2 and 4.1]) tell us that

rankFp�G�

(
H1(GS(F∞), A[p])∨

) = dr2(F)+
∑

v real

(d − d+v )

and

rankFp�G�

( ⊕

w∈S(F∞)
H1(F∞,w, Dw[p])∨

)
=

∑

v |p
(d − dv)[Fv : Qp].

Combining these calculations with (C4), we have that Sstr (A[p]/F∞)∨ has
zero Fp�G�-rank. By Lemma 2.5, it then follows that X (A/F∞) is a torsion
Zp�G�-module with trivial μZp�G�-invariant.

To prove the converse, we first recall that S∗(A∗[p]/F∞) = lim←−
L

(
Sstr(A∗[p]/L)

)
,

where L runs though all the intermediate finite extensions of F in F∞. The Poitou-Tate
exact sequence gives us the following exact sequence

0 −→ Sstr(A[p]/F∞) −→ H 1(GS(F∞), A[p]) −→
⊕

w∈S(F∞)
H 1(F∞,w, Dw[p]) −→

−→ S∗(A∗[p]/F∞)∨ −→ H 2(GS(F∞), A[p]) −→ 0,
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where the rightmost zero follows from the fact that Gal(F̄∞,w/F∞,w) has
p-cohomological dimension ≤ 1 (cf. [36, Theorem 7.1.8(i)]). Since Sstr(A[p]/F∞)
is finitely generated over Zp�G� with trivial μG-invariant, it follows from Lemma 2.5
that Sstr (A[p]/F∞)∨ is torsion over Fp�G�. Applying standard Fp�G�-rank
calculations (cf. [38, Theorems 3.2 and 4.1]) in conjunction with the above exact
sequence, we have that S∗(A∗[p]/F∞) is torsion over Fp�G�. By Lemma 2.7, this
forces S∗(A∗[p]/F∞) = 0. The conclusion now follows by applying this latter
observation to the above exact sequence.

We now apply the preceding theorem to the Zp-extension situation.

Proposition 2.8. Let F∞ be a Zp-extension of F with the property that every prime
of F in S decomposes finitely in F∞/F. Suppose that X (A/F∞) is finitely generated
over Zp. Then the following statements hold.

(a) We have H2(GS(F∞), A[p]) = 0 and there is a short exact sequence

0 −→ Sstr(A[p]/F∞) −→ H1(G S(F∞), A[p]) −→
⊕

w∈S(F∞)
H1(F∞,w, Dw[p]) −→ 0.

(b) We have H2(GS(F∞), A) = 0 and there is a short exact sequence

0 −→ Sstr (A/F∞) −→ H1(GS(F∞), A) −→
⊕

w∈S(F∞)
H1(F∞,w, Dw) −→ 0.

(c) X (A/F∞) is a free Zp-module. In particular, it has no nontrivial finite
Zp���-submodules.

Proof. Since finitely generated Zp-modules are necessarily Zp���-torsion with trivial
μZp���-invariant, statement (a) is an immediate consequence of Theorem 2.4. It then
follows from this that we have the following diagram

0 �� Sstr (A[p]/F∞)

a

��

�� H 1(G S(F∞), A[p])

b

��

��
⊕

w∈S(F∞)
H 1(F∞,w, Dw[p])

c=⊕cw

��

�� 0

0 �� Sstr (A/F∞)[p] �� H 1(G S(F∞), A)[p] ��
⊕

w∈S(F∞)
H 1(F∞,w, Dw)[p]

with exact rows. Since c is surjective, it follows that the bottom rightmost map is
surjective which in turn yields an injection Selstr (A/F∞)/p ↪→ H1(GS(F∞), A)/p.
But H1(GS(F∞), A)/p ∼= H2(GS(F∞), A[p]) = 0. Thus, we have Selstr (A/F∞)/
p = 0, or equivalently, X (A/F∞)[p] = 0. This proves (c). Finally, statement (b) now
follows from continuing with a similar argument to that in [5, Section 2]. �

Remark 2.9. The nonexistence of nontrivial finite Zp���-submodules for the dual
strict Selmer group was established for the cyclotomic Zp-extension of a non-totally
real field F (see [1, Theorem 3.11], [28, Corollary 3.6] and [34, Proposition 7.5]).
Proposition 2.8(c) thus generalizes these results by removing the “cyclotomic” and
“non-totally real” assumptions.
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3. Selmer groups of elliptic curves with CM

Let K be an imaginary quadratic field which the prime p splits completely, say
p = pp. Fix an integer h such that ph = (π) for some π ∈ OK , where OK is the
ring of integers of K . Write π for its corresponding conjugate which in turn is a
generator for the ideal ph . Now if M is an OK -module, then the multiplication-by-π
map defines an endomorphism on M , whose kernel is denoted to be E[π ]. One can
similarly define M[πn] for every integer n ≥ 1. We then write M[p∞] = ∪n≥1 M[πn].
It is a straightforward exercise to verify that this last definition is independent of
the choices of h and π . We may therefore, once and for all, fix a choice of π . In
this paper, M is usually taken to be the elliptic curve E or certain local cohomology
groups H1(Lw, E) of E .

Let F0 be a finite extension of K which is unramified at p. Let E be an elliptic
curve defined over F0 and assume throughout that our elliptic curve satisfies all of the
following conditions.

(a) E has complex multiplication given by the ring of integers of K .
(b) E has good ordinary reduction at all primes of F0 above p.
(c) F0(Etor ) is an abelian extension of K .

Fix a finite extension F of F0 which is contained in F0(E[p]), and denote by
Fp∞ the Zp-extension of F which is contained in F(E[p∞]). By [10, Chap. II,
Proposition 1.9], the Zp-extension Fp∞/F is totally ramified at primes above p and
finitely decomposed at other nonarchimedean primes.

For every extension L of F , the classical p∞-Selmer group of E over L is defined
to be

Sel(E[p∞]/L) = ker
(

H1(L , E[p∞]) −→
∏

w

H1(Lw, E)[p∞]
)

where w runs through all the primes of L .
Let S denote a finite set of primes of F containing the primes above p, the infinite

primes, the primes at which E has bad reduction of E and the primes that are ramified
in F/K . Denote by FS the maximal algebraic extension of F unramified outside S.
For every extension L of F contained in FS, we write GS(L) = Gal(FS/L). Then a
standard argument (cf. [8, 1.8]) shows that the p∞-Selmer group can be described as
follow

Sel(E[p∞]/L) = ker
(

H1(GS(L), E[p∞]) −→
⊕

w∈S(L)

H1(Lw, E)[p∞]
)
,

where S(L) denotes the set of primes of L above S. We may now record the following
fundamental theorem of Gillard and Schneps.

Theorem 3.1 (Gillard, Schneps). Sel(E[p∞]/Fp∞)∨ is finitely generated over Zp.

Proof. Schneps established the result under the assumption that F = K and K has
class number one (see [42]). When F is general and K has class number one, the
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theorem was proved by Gillard in [12]. The class number one hypothesis on K was
eventually removed in [11]; also see [10, Chap III, Theorem 2.12]). �

We now give an alternative description of the p∞-Selmer group in terms of the strict
Selmer group as defined in the previous section. In order to do this, we first define a
suitable datum. Set A = E[p∞], and for every prime v above p, set Av to be E[p∞]
or 0 according as v divides p or p. As a start, we verify that our datum satisfies the
equality in condition (C4) (noting that F has no real primes).

Lemma 3.2.
∑

v |p

(
corankZp (A)− corankZp (Av )

)
[Fv : Qp] =

∑

v |p
[Fv : Qp] = r2(F).

Proof. The first equality follows immediately from the definition of our datum. For
the second, we simply note that

∑

v |p
[Fv : Qp] =

∑

v |p
[Fv : Kp] = [F : K ] = 1

2
[F : Q] = r2(F). �

We may now give the following identification of the classical p∞-Selmer groups
and the strict Selmer group over Fp∞ .

Proposition 3.3.

Sel(E[p∞]/Fp∞) = Sstr (A/Fp∞)

= ker

(

H1(GS(Fp∞), E[p∞]) −→
⊕

w∈S(Fp∞ ),w�p

H1(Fp∞,w, E[p∞])

)

.

Proof. The second equality follows from a standard limit argument (for instance, see
[14, §5]). It remains to show that Sel(E[p∞]/Fp∞) can be described similarly. To see
this, it suffices to show that H1(Lw, E)[p∞] = 0 or H1(Lw, E[p∞]) according as w
divides p or w does not divide p. We first consider the case when w does not divide p.
Kummer theory yields the following short exact sequence

0 −→ E(Lw)⊗ Kp/Op −→ H1(Lw, E[p∞]) −→ H1(Lw, E)[p∞] −→ 0.

By a theorem of Mattuck, we have E(Lw) ∼= (OLw)
n×(a finite group). Since w is

coprime to p and hence α, we have E(Lw)⊗ Kp/Op = 0. The required equality now
follows from this and the Kummer sequence.

For the case when v divides p, the vanishing of H1(Lw, E)[p∞] follows from a
classical theorem of Coates (see [2, Theorem 12] or [10, Page 125, 1.7]). �

We now consider the (Tate) dual datum of (A, {Av }v |p) in the sense of Section 2.
By the Weil pairing, this is given by A∗ = E[p∞], and for every prime v above p, A∗v
is calculated to be 0 or E[p∞] according as v divides p or p. One easily checks that
the strict Selmer group for the dual datum has the following description

Sstr (A∗/Fp∞) = ker

(

H 1(GS(Fp∞), E[p∞]) −→
⊕

w∈S(Fp∞ ),w�p

H 1(Fp∞,w, E[p∞])

)

.
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Proposition 3.4.

Sstr (E/Fp∞) = Sstr(A/Fp∞)⊕ Sstr(A∗/Fp∞).

Proof. It suffices to show the following assertion: for a finite extension L of F
and a prime w of L above p (resp., p), one has E(L̄w)[p∞] = Ê(L̄w)[p∞] (resp.
E(L̄w)[p

∞] = Ê(L̄w)[p∞]). We will prove the case for p, the case of p can
be dealt similarly. Since E has good ordinary reduction at w and π is coprime
to p, multiplication by π is an automorphism of Ê(L̄w). This in turn induces an
automorphism of Ê(L̄w)[ph]. Therefore, for every x ∈ Ê(L̄w)[ph], there exists
y ∈ Ê(L̄w)[ph] such that π y = x . It then follows that πx = ππ y = ph y = 0
which implies that Ê(L̄w)[π ] = Ê(L̄w)[ph]. On the other hand, there is a natural
injection Ê(L̄w)[π ] ↪→ E(L̄w)[π ]. But since both groups have the same order ph , the
injection must be an isomorphism. This proves E(L̄w)[π ] = Ê(L̄w)[ph]. Similarly,
one can prove that E(L̄w)[πn] = Ê(L̄w)[phn] for every n ≥ 1. The assertion is then
a consequence of these observations. �

Theorem 3.5. The dual strict Selmer group X (E/Fp∞) is a free Zp-module of finite
rank.

Proof. By the theorem of Gillard and Schneps, we have that Sel(E[π∞]/Fπ∞)∨
is finitely generated over Zp. The conclusion of the theorem then follows from
combining this observation with Corollary 2.3, Propositions 2.8, 3.3 and 3.4. �

We now consider the structure of the Selmer groups over F∞, where F∞ is
the Z2

p-extension of F contained in F0(E[p∞]). Write G = Gal(F∞/F) and
Hp = Gal(F∞/Fp∞). The following result describes the structure of the Selmer
groups over F∞.

Theorem 3.6. The dual strict Selmer group X (E/F∞) is finitely generated over
Zp�Hp�. Furthermore, if F0(E[p]) ⊆ F, then X (E/F∞) is a free Zp�Hp�-module
with

rankZp�Hp�

(
X (E/F∞)

) = rankZp

(
(X (E/Fp∞)

)+ |Sp(Fp∞)| − 1,

where Sp(Fp∞) is the set of all primes of Fp∞ above p.

Remark 3.7. We note that the dual strict Selmer group X (E/F∞) coincides with the
classical dual p∞-Selmer group (cf. [4]). We also note that an analogue of the second
assertion of the theorem has been established for X (E[p∞]/F∞) in [41, Theorems 1
and 2]. Our result may therefore be viewed as a refinement of those.

Proof. As noted in the beginning of this section, there are only finitely many primes
of F∞ above S (cf. [10, Chap. II, Proposition 1.9]). Therefore, the proof of [9,
Lemma 2.4] carries over to show that the map

X (E/F∞)Hp −→ X (E/Fp∞)

has kernel and cokernel which are finitely generated over Zp. We then conclude from
Theorem 3.5 that X (E/F∞)Hp is finitely generated over Zp. By Nakayama lemma,
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this implies that X (E/F∞) is finitely generated over Zp�Hp�. To prove the second
assertion, we proceed as in [41]. Since F0(E[p]) ⊆ F , E has good ordinary reduction
everywhere at F . Hence we may assume S = Sp(F), where Sp(F) is the set of primes
of F above p. Consider the following diagram

0 �� S(E/Fp∞ )

s

��

�� H 1(G S(Fp∞ ), E[p∞])

h

��

��
⊕

w∈Sp(Fp∞ )
H 1(Fp∞,w, Dw[p])

g=⊕gw

��

�� 0

0 �� S(E/F∞)Hp �� H 1(G S(F∞), E[p∞])Hp ��
( ⊕

u∈Sp(F∞)
H 1(F∞,u , Du)

)Hp

with exact rows. By a similar argument to that in Proposition 2.8, we have that
H1(Hp, S(E/F∞)) = 0. Thus, by [29, Lemma 4.5], we have that

rankZp�Hp�

(
X (E/F∞)

) = rankZp

(
(X (E/Fp∞)Hp

)
.

By a diagram chasing argument, the latter is equal to

rankZp

(
(X (E/Fp∞)

)+ corankZp

(
ker g

)− corankZp

(
ker h

)
.

Since F0(E[p]) ⊆ F , it follows that Fp∞ = F(E[p∞]) and F∞ = F(E[p∞]). Hence
we have

ker h = H1(Hp, E[p∞]) = E[p∞]Hp ⊕ E[p∞]Hp = E[p∞]

which in turn implies that corankZp

(
ker h

) = 1. For each w ∈ Sp(F∞), we note that
Dw = E[p∞] or E[p∞] according as w divides p or p. A similar argument to that for
ker h shows that ker gw = 0 or E[p∞] according as w divides p or p. This in turns
yields corankZp

(
ker gw

) = 0 or 1 according as w divides p or p. Combining these
calculations, we obtain the required rank formula. Finally, we note that our calculation
also shows that ker g is a cofree Zp-module. From the exact sequence

0 −→ (ker g)∨ −→ X (E/F∞)Hp −→ X (E/Fp∞)

and noting that X (E/Fp∞) has no p-torsion (cf. Proposition 3.5), we have that
X (E/F∞)Hp has no p-torsion. Hence X (E/F∞)Hp is a free Zp-module.

Write Hn
p = H pn

p for the unique subgroup of Hp of index pn . A similar diagram
chasing argument as above shows that X (E/F∞)H n

p
is a free Zp-module for every

n. By the structure theory of finitely generated Zp�Hp�-modules, this implies that
X (E/F∞) is a free Zp�Hp�-module. �

We have seen in the preceding theorem that when F0(E[p]) ⊆ F , X (E/F∞) is a
free Zp�Hp�-module which, in particularly, implies that X (E/F∞)[p∞] = 0. It turns
out that this latter assertion holds in general without the “F0(E[p]) ⊆ F” assumption.

Corollary 3.8. We always have X (E/F∞)[p∞] = 0.
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Proof. This can be proved by a similar argument following [28, Lemma 4.2] which
we recall for convenience. Let L be an intermediate finite subextension of F∞/F .
By the descent argument as in the beginning of the proof of Theorem 3.6, we have
that X (E/Lp∞) is finitely generated over Zp, where here we write Lp∞ = L Fp∞ .
But since X (E/F∞) = lim←−

L

X (E/Lp∞) and by Proposition 2.8(c), the multiplication

by p map on X (E/Lp∞) is injective, it follows that the multiplication by p map on
X (E/F∞) is also injective. �

Now denote by Fcyc the cyclotomic Zp-extension of F , and write H =
Gal(F∞/Fcyc). Recall from [3, 9] that X (E/F∞) is said to satisfy the MH (G)-
conjecture if X (E/F∞)/X (E/F∞)[p∞] is finitely generated over Zp�H�.
By Corollary 3.8, this in turn implies that in our complex multiplication situation, the
MH (G)-conjecture is equivalent to saying that X (E/F∞) is finitely generated over
Zp�H� which we formally state below.

Corollary 3.9. Retain the settings of this section. Then X (E/F∞) satisfies the
MH (G)-conjecture if and only if X (E/F∞) is finitely generated over Zp�H�.

We should emphasis that when E does not have CM, the MH (G)-conjecture is in
general not equivalent to Zp�H�-finite generation! Here is an example to illustrate
this. Let E be the elliptic curve 11a2 of Cremona’s table. Take p = 5, F = Q(μ5)

and F∞ = Q(E[5∞]). It is well-known that F∞ is a strongly admissible 5-adic
extension of F . Furthermore, it follows from [8, Theorem 5.4] that X (E/Fcyc) is
finitely generated over Z5 which, by [9, Theorem 2.1], then implies that X (E/F∞)
is finitely generated over Z5�H�. Now let E ′ be either 11a1 or 11a3. It follows from
[3, Lemma 5.6] that X (E ′/F∞) satisfies the MH (G)-conjecture. Therefore, we may
apply [26, Theorem 3.1] to conclude that μG(X (E ′/F∞)) = μ�(X (E ′/Fcyc)). But
this latter quantity is well-known to be nonzero (cf. [8, Theorem 5.28]) and hence
X (E ′/F∞) is not finitely generated over Z5�H�.

4. Some remarks on fine Selmer groups

The results in the previous section have some interesting consequences on the
structure of the fine Selmer group which we now describe. As before, K is an
imaginary quadratic field at which the prime p splits completely, and F0 is a finite
extension of K which is unramified at p. Let E be an elliptic curve defined over F0

which is assumed to satisfy all of the following conditions.

(a) E has complex multiplication given by the ring of integers of K .
(b) E has good ordinary reduction at all primes of F0 above p.
(c) F0(Etor ) is an abelian extension of K .

Fix a finite extension F of F0 which is contained in F0(E[p]). For a finite extension
L of F , the fine Selmer group of an elliptic curve E over L (cf. [6, 29]) is defined by

R(E/L) = ker
(

H1(GS(L), E[p∞]) −→
⊕

w∈S(L)

H1(Lw, E[p∞])
)
.



250 Meng Fai Lim and Ramdorai Sujatha

For an algebraic (possibly infinite) extension L of F , we set R(E/L) = lim−→
L

R(E/L),

where L runs over all finite extension L of F contained in L.
The following is the main result of this section.

Proposition 4.1. The dual fine Selmer group R(E/F∞)∨ has trivial μG -invariant.

Proof. It follows from Theorem 3.6 and [18, Lemma 2.7] that X (E/F∞) is a finitely
generated torsion Zp�G�-module with trivial μG -invariant. Since R(E/F∞)∨ is a
quotient of X (E/F∞), the conclusion follows immediately. �

Remark 4.2. We emphasise that the above proposition is proven under the standing
assumption that F0/K is unramified at p. Had we worked with the stronger assumption
that F0/K is unramified at p, then we can give an alternative simpler proof which we
now do. As noted above, it suffices to show that X (E/F∞) is a torsion Zp�G�-module
with trivial μG -invariant. Since X (E/F∞) is the direct sum of Sstr(E[p∞]/F∞)∨ and
Sstr (E[p∞]/F∞)∨, it suffices to do this for each of the summand. By Proposition 3.5,
Sstr (E[p∞]/Fp∞)∨ is finitely generated over Zp with no p-torsion. By a similar
argument to that in Proposition 3.6, we can show that Sstr (E[(p∞]/F∞)∨ is a
torsion Zp�G�-module with trivial μG -invariant. Since F0/K is assumed to be
unramified at p and hence at p, we can apply a similar argument as above to show
that Sstr (E[(p∞]/F∞)∨ is a torsion Zp�G�-module with trivial μG -invariant via the
Fp∞ -direction.

We now describe how Proposition 4.1 can be viewed as a weak partial support to
the Conjecture A of Coates-Sujatha [6]. Denote by Fcyc the cyclotomic Zp-extension
of F . Conjecture A then asserts that R(E/Fcyc)∨ is finitely generated over Zp. Under
the assumption of the validity of Conjecture A, it follows from a standard descent
argument (cf. [6, Lemma 3.1]) that R(E/F∞)∨ is finitely generated over Zp�H�,
where H = Gal(F∞/Fcyc). By a result of Howson [18, Lemma 2.7], this in turn
implies that R(E/F∞)∨ has trivial μG-invariant. Our proposition thus verifies this
latter prediction.

We end this section with the next result which gives a first instance where the
MH (G)-conjecture and Conjecture A are related.

Proposition 4.3. Suppose further that the MH (G)-conjecture is valid for X (E/F∞).
Then R(E/Fcyc)∨ is finitely generated over Zp.

Proof. Since R(E/Fcyc)∨ is a quotient of X (E/Fcyc), the conclusion follows
immediately from Corollary 3.9. �

5. Analogue of Conjecture A over Fp∞ and relation with Conjecture B

In this section, we discuss an analogue of Conjecture A for the Zp-extension Fp∞/F
and its consequences. It seems that this has not been observed in the literature before,
and hence we record this formally.

Proposition 5.1. The dual fine Selmer group R(E/Fp∞)∨ is a finitely generated
Zp-module.
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Proof. This follows immediately from Theorem 3.5 and the fact that R(E/Fp∞)∨ is
a quotient of X (E/Fp∞). �

Of course, it is already well-known that the weak Leopoldt conjecture for E[p∞]
over Fp∞ is valid (cf. [39]). Here we can record the presumably stronger assertion,
namely, the weak Leopoldt conjecture for E[p∞] over Fp∞ is also valid.

Corollary 5.2. H2(GS(Fp∞), E[p∞]) = 0.

In view of Proposition 5.1, we can ask for a formula for the Zp�Hp�-rank of
R(E/F∞)∨ analogous to [6, Theorem 4.11]. This is precisely the next result. Here
we write H2

Iw(F∞/F, Tp E)
) = lim←− H2(GS(L), Tp E)

)
, where L runs through all the

finite extensions L of F contained in F∞ and the inverse limit is taken with respect to
the corestriction maps.

Proposition 5.3. Suppose that F0(E[p]) ⊆ F. Then the dual fine Selmer group
R(E/F∞)∨ is a finitely generated Zp�Hp�-module with

rankZp�Hp�

(
R(E/F∞)∨

) = rankZp

(
R(E/Fp∞)

∨)+ |Sp(Fp∞)| − 1

− rankZp

(
H1(Hp, H2

Iw(F∞/F, Tp E))
)
,

where Sp(Fp∞) is the set of all primes of Fp∞ above p.

Proof. The proof is entirely similar to that in [6, Theorem 4.11]. �

In [6, Conjecture B], Coates and the second author conjectured that R(E/F∞)∨ is
pseudo-null over Zp�G�. The preceding proposition gives a criterion for this to hold
(compare with [6, Theorem 4.11]).

Corollary 5.4. Retain the settings of Proposition 5.3. Then R(E/F∞)∨ is pseudo-null
over Zp�G� if and only if

rankZp

(
R(E/Fp∞)

∨)+ |Sp(Fp∞)| = 1+ rankZp

(
H1(Hp, H2

Iw(F∞/F, Tp E))
)
.

Proof. Since R(E/F∞)∨ is finitely generated over Zp�Hp�, it follows from a theorem
of Venjakob [47] that R(E/F∞)∨ is pseudo-null over Zp�G� if and only if it is torsion
over Zp�Hp�. The corollary is now immediate from the preceding proposition. �

We end this section saying a bit more on the background of Conjecture B. To some
extent, this conjecture can be thought as an analogue to a conjecture of Greenberg
which we now describe. Recall that a Galois extension F∞ of F is said to be a strongly
admissible pro-p, p-adic Lie extension of F if (i) G = Gal(F∞/F) is a compact
pro-p, p-adic Lie group without p-torsion, (ii) F∞ contains the cyclotomic Zp

extension Fcyc of F and (iii) F∞ is unramified outside a finite set of primes. Denote
by K (F∞) the maximal unramified abelian pro-p extension of F∞ in which every
prime above p splits completely. When F∞ is the composite of all the Zp-extensions
of F , Greenberg [15] conjectured that Gal(K (F∞)/F∞) is pseudo-null over Zp�G�.
(Actually, to be more precise, Greenberg’s original conjecture is concerned with the
pseudo-nullity of a slightly bigger Galois group. For a discussion of the relation
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between the original conjecture of Greenberg and the slightly weaker version adopted
here, we refer readers to [25, Subsection 4.2].) For a general noncommutative
F∞, the module Gal(K (F∞)/F∞) is not necessarily pseudo-null, and this was
first observed by Hachimori and Sharifi (see [16]). Despite the counterexamples
constructed by Hachimori and Sharifi, Coates and the second named author have
expressed optimism that the corresponding assertion for the dual fine Selmer group
of an abelian variety should hold regardless of the strongly admissible extension
F∞ (see [6, Section 4]). Motivated by the close relationship between the Iwasawa
μ-conjecture and Conjecture A, one might ask for an analogue relationship for the
Greenberg conjecture and Conjecture B. Of course, the observations of Hachimori
and Sharifi tell us that such a relation may not hold directly. Nevertheless, we may still
ask whether there exists an implication of Conjecture B from Greenberg conjecture.
Some (very) partial results in this direction have been obtained, and we refer the
interested readers to [27, 33] for further discussion on these.

6. Further remark on Conjecture B

We now describe an interesting consequence of Conjecture B. Here we shall assume
that our elliptic curve E is defined over an imaginary quadratic field K and has
complex multiplication by OK . To facilitate further discussion, we need to introduce
certain notations. Let Fn = K (E[pn+1]). For each prime vn of Fn above p, we let
Un,vn denote the local units of Fn,vn which are congruent to 1 modulo vn . Write
Un = ∏

vn
Un,vn . Denote Cn for the group of elliptic units of Fn (see [10, Chap. II,

§2] for definition). There is a natural map from Cn to Un via the diagonal map and we
denote the closure of this image by C̄n . The global units of Fn is then denoted by En,
and its closure in Un by Ēn. Write Ē∞ = lim←−

n

Ēn . We have similar definitions for U∞,

C̄∞. Denote by Mp(F∞) (resp. M(F∞)) the maximal abelian pro-p extension of F∞
unramified outside p (resp. unramified everywhere). Class field theory then gives us
an exact sequence

0 −→ Ē∞/C̄∞ −→ U∞/C̄∞ −→ Gal(Mp(F∞)/F∞) −→ Gal(M(F∞)/F∞) −→ 0.

Proposition 6.1. The following statements are equivalent.

(1) Conjecture B is valid for R(E/F∞)∨. In other words, R(E/F∞)∨ is pseudo-null
over Zp�G�.

(2) Ē∞/C̄∞ = 0.

Proof. By [6, Lemma 3.8], R(E/F∞) = Hom(Gal(K (F∞)/F∞), E[p∞]), where
K (F∞) is the maximal unramified abelian pro-p extension of F∞ at which every
prime of F∞ splits completely. It follows that R(E/F∞)∨ is pseudo-null over Zp�G�
if and only if Gal(K (F∞)/F∞) is pseudo-null over Zp�G�. It then follows from
[25, Théorème 4.4] that the latter assertion holds if and only if Gal(M(F∞)/F∞) is
also pseudo-null over Zp�G� which, by [40, Theorem 4.1(i)], is equivalent to saying
that E∞/C̄∞ is pseudo-null over Zp�G�. Now by the work of Yager (cf. [49]; also see
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[10, Chap III §1]), we know that U∞/C̄∞ has no nonzero pseudo-null Zp�G�-
submodule. Hence the equivalence of statements (1) and (2) is now a consequence of
this observation and the above discussion. �

We now mention a similar observation in the classical case. To do so, we now write
Fn for the field Q(μpn+1)+. Let C1

n be the group generated by the cyclotomic units
modulo 1 in Fn (see [7, Definitions 4.3.2 and 4.3.3]) and U 1

n the group associated
to local units modulo 1 (see [7, Definition 4.3.3]). We also write E1

n for the global
units of Fn modulo 1 (cf. [7, Definition 4.5.1]). Denote by E1∞ the inverse limit of E1

n
taken with respect to the norm maps. We also have similar definitions for U 1∞, C1∞.
It follows from [7, Theorem 4.5.2] that we have an exact sequence

0 −→ E1∞/C1∞ −→ U 1∞/C1∞ −→ Gal(Mp(F
cyc)/Fcyc) −→ Gal(M(Fcyc)/Fcyc) −→ 0,

where Mp(Fcyc) is the maximal abelian pro-p extension of F∞ unramified
outside p. Then we have the following proposition which is the classical analogue of
Proposition 6.1.

Proposition 6.2. The following statements are equivalent.

(1) Gal(M(Fcyc)/Fcyc) is finite.
(2) E1∞/C1∞ = 0.

Proof. The proof is similar to that in Proposition 6.1 noting that U 1∞/C1∞ has no
nontrivial finite Zp���-submodules (see [7, Proof of Theorem 4.6.3]). �

The finiteness of Gal(M(Fcyc)/Fcyc) is a special case of a conjecture of Greenberg
[13]. In the situation here, one in fact expects that Gal(M(Fcyc)/Fcyc) = 0 and this
is the so-called Kummer-Vandiver Conjecture (or one of its equivalent form). When p
is a regular prime, this conjecture vacuously holds. For irregular primes, this has been
numerically verified up to primes less than 231 (see [17] and the references therein for
history and prior calculations before). We finally mention that it is already known that
under the validity of the Kummer-Vandiver Conjecture, one has E1∞/C1∞ = 0 (see [7,
Proposition 4.5.3]). The point of Proposition 6.2 is that this vanishing is equivalent
to the a priori weaker conjecture of Greenberg. We also mention that Proposition 6.2
is an old observation of Greenberg (we thank Thong Nguyen Quang Do and Romyar
Sharifi for pointing this out to us).

In fact, Proposition 6.2 can be extended to a more general setting, and we are very
grateful to Thong Nguyen Quang Do for explaining this to us. Let F denote an abelian
totally real field, where the Fn’s now stand for the intermediate subfields of Fcyc/F .
We then write CFn for the circular units of Fn in the sense of Sinnott [43]. Write
C̄Fn = CFn ⊗ Zp. The global units of Fn is still denoted by EFn . As before, we write
E∞ and C̄∞ for the respective inverse limits.

Proposition 6.3. Suppose that for every m ≥ n ≥ 0, we have C̄Gal(Fm/Fn )
Fm

= C̄Fn .
Then the following statements are equivalent.

(1) Gal(M(Fcyc)/Fcyc) is finite.
(2) E∞/C∞ = 0.
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Proof. A similar argument as before shows that statement (1) is equivalent to saying
that E∞/C∞ is finite. On the other hand, it is known that under the hypothesis of
the proposition that the projective dimension of E∞/C∞ as a Zp���-module is ≤ 1,
or equivalently, E∞/C∞ has no nontrivial finite Zp���-submodule. The proposition
is now an immediate consequence of these. �

We finally note that the criterion of Proposition 6.3 is satisfied in many cases (see
[37, Proposition 2.4]).
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