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1. Introduction

Elements of the group G = SL2(R) act on the upper half plane

H = {z = x + iy | y > 0}

by linear fractional transformations

[

a b
c d

]

: z 7−→ az + b

cz + d
.

The arithmetic subgroup Γ = SL2(Z) acts discretely on H, and as is well
known it has as fundamental domain the region

D = {|z| ≥ 1, |x| ≤ 1/2} .

On the other hand, let P be the group of upper triangular matrices in G,
containing the group N of upper unipotent matrices. Thus elements of

Γ ∩ P =

{[

±1 n
0 ±1

] ∣

∣

∣

∣

n ∈ Z

}

act on H by horizontal integral translations z 7→ z + n, and a fundamental
domain for Γ ∩ P is therefore the region

{

z ∈ H
∣

∣ x = |RE(z)| ≤ 1/2
}

.

If for Y > 0 we define the region

HY = {z = x + iy | y > Y }

then there are a number of properties it possesses that play an important
role in analysis on the quotient Γ\H, for example in the construction of
Eisenstein series and the proof of the Selberg trace formula:
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• The region HY is invariant under the group N as well as the discrete
subgroup Γ ∩ P ;

• The quotient by N(Γ ∩ P ) is isomorphic to the subset [Y,∞);
• for Y ≥ 1, the canonical projection from Γ ∩ P\H to Γ\H when re-

stricted to the quotient Γ ∩ P\HY embeds it as a neighbourhood of
the cusp at infinity;

• the complement of the image of HY in Γ\H is compact.

y = Y

The second property may also be formulated as saying that if z and γ(z)
both lie in HY for some γ in Γ then γ lies in P .

In effect, we have a partition of Γ\H into two parts, one a neighbourhood
of infinity which is relatively simple, and the other a compact piece of the
interior.

There is another way to formulate this result. Let H∗ be the union of H
and the rational cusps, the Γ-translates of ∞, which may be identified with
the points of P1(Q). If

γ =

[

a b
c d

]

then it takes ∞ to a/c and HY to the disc centred at (a/c, 1/2c2Y ) tangent
to R at a/c. The stabilizers in G of the cusps are the Γ-conjugates of P ,
and the Γ-transforms of the regions HY , which are discs unless γ lies in
P , are the neighbourhoods of the cusps in the topology of H∗ defined by
Satake. The sets γHY , with Y fixed, as γ ranges over Γ are disjoint (when
not identical), and their union is stable under Γ as is its complement in H.
The quotient of this complement by Γ is compact.
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As far as I know, it was Jim Arthur who first generalized this result ex-
plicitly to arbitrary arithmetical quotients (in 1977), although I think it’s
fair to say that this generalization was already implicit in Satake’s work on
compactifications of arithmetic quotients. In Arthur’s generalization the
subsets of the partition are parametrized by Γ-conjugacy classes of rational
parabolic subgroups, which is also how Satake’s rational boundary compo-
nents are parametrized. Of course Arthur did this work with the intention
of using it in dealing with his extension of the Selberg trace formula, but
subsequently it has also been useful in other contexts.

In this note, which is largely expository, I will explain Arthur’s partition
for GLn(Z), applying ideas almost entirely due to Harder, Stuhler, and
Grayson, and including a self-contained account of their work.

A point z = x + iy in H gives rise to the lattice generated by z and 1.
If we choose for this the basis 1 and −z, we obtain the positive definite
symmetric form

Qz(m, n) =
1

y
(m − nz)(m − nz) =

1

y

(

m2 − 2xmn + n2|z|2
)

(normalized so as to have discriminant equal to 1). Its matrix is

Qz =
1

y

[

1 0
−x −y

] [

1 −x
0 −y

]

=

[

1/y −x/y
−x/y x2 + y2/y

]

.

On the other hand, the group SL2(R) acts on the space of positive definite
2 × 2 symmetric matrices Z by the transformations

Z 7−→ tg−1 Z g−1 .

I leave it as an exercise to verify that the two actions are the same—that
for any z in H we have gQz = Qg(z) for all g in SL2(R). The important
part of the verification is that

[ 1 −z ]

[

a b
c d

]−1

= [ 1 −z ]

[

d −b
−c a

]

= [ (cz + d) −(az + b) ]

= (cz + d) [ 1 −(az + b)/(cz + d) ] .



Stability of lattices and the partition of arithmetic quotients 4

In higher dimensions we therefore have the following generalization of the
classical theory. For any real vector space V , let X = XV be the space of all
positive definite quadratic forms on V . For V = Rn this may be identified
with Xn, the space of all positive definite symmetric n × n matrices, if we
define

x(v) = tv x v ,

identifying Rn with column matrices. The space X is a homogeneous space
for G = GL(V ), where an element g in G acts according to the rule gQ(v) =
Q(g−1v). The subgroup acting trivially is ±I. On Xn, this is equivalent
to x 7→ tg−1 x g−1. There is one peculiar point to mention. Although the
classical action of SL2(Z) on H and that on X2 agree, the corresponding
actions of GL2(Z) do not—the fractional linear transformations in GL2(Z)
take H to its conjugate, but the natural action of GL2 takes the connected
space X2 to itself.

If x is a positive definite symmetric matrix, Gauss elimination applied to x
requires no row swapping and hence gives a factorization x = ℓ d u where ℓ
is lower triangular unipotent, d diagonal, and u upper triangular unipotent.
Since x is symmetric, ℓ = tu and hence

x = tu du .

The action of GLn on X is therefore transitive. The isotropy subgroup of
the identity matrix (the sum of n squares) is K = On(R), and therefore
X = Xn may be identified with G/K. In fact, it follows equally from Gauss
elimination that the subgroup of upper triangular matrices acts transitively
on Xn, and hence also any of its conjugates in G, or any group that contains
one of its conjugates.

Let Γ be the subgroup GLn(Z). The object of these notes is to show
how ideas of [Grayson 1984] (which follows [Stuhler 1976], itself depending
heavily on [Harder-Narasimhan 1975]) can be used to describe a parabolic
decomposition of Γ\X used by Arthur and others in the theory of auto-
morphic forms. A flag in the vector space Rn is an increasing sequence of
vector subspaces. It is a rational flag if the subspaces are rational (defined
by linear equations with coefficients in Q). A parabolic subgroup of G is
the stabilizer of a flag, and a rational parabolic subgroup is the stabilizer
of a rational flag. Any partition n = n1 + n2 + · · · + nk of n into positive
numbers determines the rational flag

0 ⊂ Rn1 ⊂ Rn1+n2 ⊂ . . . ⊂ Rn

and the standard parabolic subgroup associated to this partition is the
stabilizer of this flag. If P is any rational parabolic subgroup of G with
unipotent radical N then there is a canonical surjection from Γ ∩ P\X to
Γ\X . Arthur’s result describes a simple N -invariant subset of Γ∩P\X for
which this map is an embedding, and partitions Γ\X into a disjoint union
of the images of such embeddings as P ranges over a set of representatives
of Γ-conjugacy classes of rational parabolic subgroups. As remarked above,
this is necessary in the theory of Eisenstein series, where functions in the
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continuous spectrum of Γ\X are constructed in terms of functions on the
parabolic quotients (Γ ∩ P )N\X . Since P contains a conjugate of the
group of upper triangular matrices, P acts transitively on X , which may
be identified with the quotient P/K ∩ P .

Let C be the acute cone {si ≤ si+1} in Rn. The principal result of this
paper, stated roughly, is that

There exists a canonical map associating to each x in Xn a
parabolic subgroup Px and a point sx in C lying in the face of
C naturally associated to P . The point γx maps to γPxγ−1

and sx, and the structure of the fibres of this map may be
described recursively in terms of analogous maps on lower
dimension symmetric spaces.

The space Γ\X is therefore partitioned by Γ-conjugacy classes of rational
parabolic subgroups.

Existing discussions of these matters for arbitrary arithmetic groups can be
found in [Arthur 1978], [Osborne-Warner 1983], [Saper 1994], and [Leuz-
inger 1995]. Another recent treatment, more arithmetical in flavour, can
be found in the Trieste lectures [Harder-Stuhler 1997]. But techniques
explained in the two papers [Grayson 1984] and [Grayson 1986] seem to me
to be close to ideal, and provide as well an elegant derivation of classical
reduction theory. Incidentally the authors of many of these papers often
seem to be largely unaware of each other and particularly not to have known
about the much older result stated in [Arthur 1978] (Lemma 6.4). Arthur
works with adèle groups, but his results are easily reformulated and proven
for arithmetic ones (as has been done by Osborne and Warner).

One of the virtues of this approach is that it strengthens known analogies
between symmetric varieties and the buildings of Bruhat-Tits associated to
p-adic fields, for example those pointed out so strikingly in [Manin 1994].

The main reference here is [Grayson 1984], which considers symmetric s-
paces associated to GLn,F for number fields F , as well as various orthogonal
groups with respect to symmetric or anti-symmetric forms. In the second
paper [Grayson 1986] he extends his techniques to an arbitrary semi-simple
group defined over Q. These papers of Grayson are just part of a large
literature dealing with related material, perhaps originating with [Harder
1969]. In these notes the only new contribution is to explain the link be-
tween Grayson’s ideas and those of Arthur, and I shall discuss in detail only
SLn and GLn. Incidentally, it seems to me that the theory explained in
Grayson’s papers for these groups and the orthogonal groups is just about
perfect, whereas for other groups there are some loose ends to be tied up.
As Grayson himself points out, for example, it would be interesting to
handle arbitrary reductive groups in a similar spirit, whereas his current
theory applies only to semi-simple ones. In this respect Grayson’s theory
again has points in common with the Bruhat-Tits theory. Another loose
end in Grayson’s papers is the role of relative discriminants. The recent
paper [Harder-Stuhler 1997] deals with this question a little more precisely
by discussing the reduction theory for Chevalley groups over number fields.
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This paper was written mostly during a visit to the Université de Lyon I.
Thanks are due to Fokko du Cloux for arranging the visit. Armand Borel
spent much of his professional energy on the reduction theory of arithmetic
groups, so it is appropriate that I dedicate this paper to his memory. I also
wish to thank Leslie Saper for valuable comments on various versions of
this paper.

2. The basic definitions

I follow Grayson in defining a lattice of rank n to be a pair Λ = (LΛ, QΛ)
where LΛ is an abelian group isomorphic to Zn and QΛ a Euclidean metric
on it. Usually I’ll just refer to the group L, with Q implicit. The metric Q
also induces a Euclidean metric on the real vector space V = LR = L ⊗ R,
and a uniform Riemannian metric on the torus quotient V/L. If (ℓi) is a
basis of L and (ej) is an orthonormal basis of V , then the volume of the
parallelogram spanned by the ℓi is the absolute value of the determinant of
the matrix E with entries ℓi•ej . The matrix Q of the quadratic form with
respect to the basis ℓ, on the other hand, is that with entries ℓi•ℓj. But
the matrix Q is also the matrix product tE E, so that det(Q) = det(E)2. A
unit lattice is a lattice whose fundamental parallelograms in LR have unit
area, or equivalently | det(E)| = det(Q) = 1.

Two lattices are isomorphic to each other if there is an isomorphism of
the groups inducing an isomorphism of metrics. Two lattices are similar if
their metrics differ by a positive scalar. Our basic problem, here and more
generally, is to describe as explicitly as possible the isomorphism classes of
these structures.

If L is a free subgroup of V of maximal rank, then two quadratic forms x1

and x2 on V give rise to isomorphic lattices based on L if and only if x2 =
γx1 with γ in GL(L). Thus the set LL of isomorphism classes of lattices
with free group L may be identified with GL(L)\XV . On the one hand, the
group L may be assumed to be Zn. If Q is a positive definite metric on Zn

with associated inner product 〈 • , •〉, then the matrix (〈ei, ej〉) is positive
definite and symmetric. This leads to an identification of the isomorphism
classes of lattices associated of dimension n with the arithmetic quotient
GLn(Z)\Xn, those of unit lattices with GLn(Z)\Xn where Xn is the subset
of matrices in Xn with determinant 1. On the other hand, LR may be
identified with Rn and the quadratic form with the sum of squares, in
which case the isomorphism classes of lattices may be identified with the
set of discrete subgroups of Rn of rank n, modulo rotations. Classically,
both of these complementary identifications have been used.

Even if one wants to work only with unit lattices in dimension n it is
necessary to work with arbitrary lattices of smaller rank. In terms of the
group SLn this amounts to using the copies of GLm embedded along the
diagonals of n×n matrices. For this reason I generally deal with all lattices.
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3. Dimension two

We shall first look more carefully at the case n = 2, where things can be
easily understood. In identifying the isomorphism classes of unit lattices
with SL2(Z)\H a certain number of coincidences play an important role
and it is probably best if I recall them.

First of all, any pair u and v in C which are not real multiples of one another
determine a lattice. I’ll choose for this the opposite of the usual orientation
in C. In particular a pair z = x + iy with y > 0 and 1 determine a lattice.

Suppose let u∗ and v∗ be a basis of an arbitrary two-dimensional lattice.
Let v be a complex number with |v| = ‖v∗‖ and u such that |u| = ‖u∗‖,
IM(u) > 0, with the angle between u and v equal to that between u∗ and
v∗. Then the pair z = u/v and 1 are similar to the pair u∗ and v∗. Thus

• The upper half-plane H classifies similarity classes of two-dimensional
lattices.

It also classifies bases of unit lattices, since there is a unique unit lattice in
every oriented similarity class. The lattice spanned by z and 1 has area y,
so that it corresponds to the unit lattice spanned by z/

√
y and 1/

√
y.

Every point in H can be transformed by an element of SL2(Z) into an
essentially unique point in the region

D = {z = x + iy | −1/2 < x ≤ 1/2, |z| ≥ 1} .

Equivalently, the lattice spanned by 1 and z will be similar to an essentially
unique one spanned by 1 and a point of this region.

I think it was Lagrange who first described the algorithm that carries out
the necessary reduction, although for a slightly different purpose. The basic
reasoning behind the algorithm is contained in this very elementary result,
to which I give Lagrange’s name for subsequent reference:
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Lemma 3.1. (Lagrange) If L is any lattice, u a primitive vector in L,
and v′ a vector in L′ = L/Zu, then there exists a unique representative v
of v′ in L with the property that its projection onto u lies in the interval
(−u/2, u/2 ]. The inequality

‖v‖2 ≤ ‖u‖2

4
+ ‖v′‖2 .

holds, where we identify v′ with a vector v⊥ in the orthogonal complement
of u.

u

vv⊥

To see from this why every point z in H may be transformed to an essentially
unique point in the region D, take u to be a vector of least length in the
lattice generated by 1 and z, and apply the Lemma. The vector v will then
have length at least as large as that of u, and after we rotate and scale to
get u = 1 the vector v will lie in the region D. For some points there may
be several vectors of least length in this lattice (i.e. more than just one and
its negative), and this will cause some ambiguity in the choice of point in
D. What this amounts to is that the points z and −1/z in D on the unit
circle |z| = 1 will be associated to the same lattice in this procedure.

In summary, if (L, Q) is a lattice of rank two there exists an essentially
unique positively oriented basis u and v of L where u is a vector in L of
shortest length and the projection of v on the line through u lies between
±u/2. For exceptional lattices corresponding to points on the boundary of
D there will be some harmless ambiguity in the choice of u and v. Our
knowledge of the domain D allows us to classify completely the isomorphism
classes of unit lattices. The main result of these notes will be to generalize
this classical result in a somewhat weak sense.

Grayson (following Stuhler) associates to every lattice L of rank two its
Newton polygon. First we make up a set in the plane in the following way:
(1) We put (0, 0) in it. (2) Let vol(L) be the common area of any one of
the fundamental parallelograms of L. We put (2, log vol(L)) in the set. (3)
If v is any primitive vector in L (i.e. not a multiple of one in L) then we
put (1, log ‖v‖) in the set. The first coordinate in each of these points is
just a dimension. We plot these points in the plane. For example, when
the lattice is this:
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(with ‖u‖ < 1) we get the plot on the left, and if we shrink-wrap it—for
reasons I’ll explain in a moment—we get the figure on the right:

The shorter a vector, the lower its plotted point. Since the vectors in ev-
ery lattice have length bounded away from 0, the plot points are certainly
bounded from below. Therefore the convex hull of the collection of plot
points is a polygon bounded from below. Since there are arbitrarily long
primitive vectors in the lattice the left and right sides of the hull are ver-
tical lines. Grayson calls the set of points plotted the canonical plot of
the lattice, and the boundary of the convex hull of the plot its canonical

polygon. I’ll call it the lattice’s profile.

Let z = x + iy be a point of D, and let a =
√

y. The lattice of unit area
corresponding to z is that spanned by 1/a and (x/a)+ia. The vector 1/a is a
vector of least length in this lattice, by definition of D. The point Grayson
attaches to the lattice is thus (1,− log a). This will lie below the x axis
when a > 1. Therefore the points of the interesting part of D where y ≤ 1
correspond to canonical plots lying entirely on or above the x-axis, and the
profile of such a lattice has its only vertices at (0, 0) and (2, 0). It is called
a semi-stable lattice by Grayson and Stuhler, and if we don’t assume the
lattice to have area A = 1 then a lattice is called semi-stable if the bottom
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of its profile is a straight line. If u is the shortest vector in the lattice
then semi-stability means that log ‖u‖ ≥ (1/2) logA or ‖u‖ ≥

√
A. The

terminology is taken from Mumford’s geometrical invariant theory—stable
lattices are the arithmetic analogues of stable vector bundles on Riemann
surfaces, which are discussed for example in the paper [Harder-Narasimhan
1975].

Points in D where y > 1 correspond to plots falling below the x-axis, and
the profile will have an additional vertex below the x-axis on the line x = 1.
More generally, a lattice which is not semi-stable is one in which ‖u‖ <

√
A.

It is said to be unstable. Thus the degree of instability of a rank two lattice
is measured by the size of its smallest vectors, compared to its volume. One
important property that unstable lattices possess is that for them the line
containing a shortest vector, the one giving rise to the middle vertex, is
unique.

Something stronger is true, however, for unstable lattices—something that
can be noticed in the figures above. If u is a shortest vector in an unstable
lattice then ℓ(u) = (1, log ‖u‖) is a vertex on the profile. The lattice’s profile
will break at this point. The nature of the break tells something about the
second shortest primitive vectors in the lattice. Let v be a primitive vector
such that u and v span the lattice. The area A is equal to ‖u‖ · ‖v⊥‖,
where v⊥ is the projection of v orthogonal to u. The slope of the profile
to ℓ(u) is log ‖u‖, and that from ℓ(u) to (2, log A) is log ‖v⊥‖ ≤ ‖v‖. The
existence of the break for u means that the second slope is greater than
the first. Furthermore, any other primitive vector in the lattice will project
onto a multiple of v⊥. Therefore the inside of the parallelogram shown in
the following picture is empty of plotted points:

A

v

u
slope = log ‖u‖

slope = log ‖v
⊥‖

where we have matched the bottom of the canonical polygon with matching
sides of a parallelogram. This explains the apparent gap towards the bottom
of the canonical plot.

Let L be an unstable lattice with shortest vector u, let V1 be the rational
line through u, and L1 = V1 ∩ L. This determines a lattice flag F

0 ⊂ L1 ⊂ L2 = L

called the canonical flag associated here to L. This gives rise in turn to a
flag of rational subspaces

0 ⊂ V1 = L1 ⊗ R ⊂ V2 = L ⊗ R .
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Conversely, if F is any rational flag in R2, let HF be the set of all unstable
lattices with flag F . It follows from the remarks just above that HF is
invariant under the unipotent radical NF of the parabolic subgroup PF

stabilizing F . More explicitly, if F∞ is the flag fixed by the subgroup P
of upper triangular matrices then HF∞

is the region {y > 1}. If γ lies in
SL2(Z) and γ(∞) = p/q then HγF∞

is the γHF∞
, the interior of the circle

tangent to R at p/q of radius 1/2q2.

The distinction between stable and unstable partitions the fundamental
domain D.

What is the significance of this partition? The group Γ ∩ P is made up of
matrices

±
[

1 n
0 1

]

with n an integer, and elements of Γ ∩ P act by horizontal integral trans-
lation on H. The group Γ ∩ P is far simpler than Γ itself. A fundamental
domain for Γ ∩ P is the band

{x + iy | −1/2 < x ≤ 1/2}
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The region y > 1 in D may therefore be identified with a very simple
subregion of Γ ∩ P\H. Its structure doesn’t mirror any of the complexity
of D itself. The region y ≤ 1 in D, on the other hand, is rather more
complicated. I call it the core of D. What the partition of Arthur does
for n > 2 is to divide up similarly the space GLn(Z)\Xn, partitioning
isomorphism classes of lattices of dimension n into components associated
to parabolic subgroups of GLn (or certain conjugacy classes of them). The
component corresponding to the group P may be identified with a subset
of Γ∩P\Xn describable in terms of the geometry of P rather than that of
G.

4. Lattices of arbitrary rank

Fundamental domains for the action of GLn(Z) on Xn have been completely
described for a few low values of n. The details are useful in certain com-
putations, but since their complexity grows rapidly with n it is fortunate
that explicit knowledge of this sort is rarely necessary in the theory of au-
tomorphic forms. For large n, then, each component in Arthur’s partition
will possess a core of a perhaps unknown (and even unknowable) nature,
but the exact description of that core should not be required to elicit in-
teresting and important information. In fact the opposite is in some sense
true—analytical techniques should be able to say something about the ge-
ometry of the core of an arithmetic quotient that is almost impossible to
access directly.

The simplest way to construct the partition uses the canonical flag of a
lattice of arbitrary dimension. This concept originated perhaps with Gunter
Harder, was extended by Ulrich Stuhler, and improved by Dan Grayson.
Grayson’s ideas might be said merely to add graphic content to those of
Stuhler, but the effect on the clarity of arguments is dramatic. He associates
to every lattice its canonical plot, its profile, and then finally its canonical
flag.

If L is a lattice and M is a discrete subgroup, M is called a sublattice if
one of these equivalent conditions holds:

(1) L/M has no torsion;
(2) M is a summand of L;
(3) every basis of M may be extended to a basis of L;
(4) the group M is the intersection of L with a rational vector subspace

of LR;
(5) the quotient L/M is a free Z-module.

The sublattices of dimension one, for example, are the free subgroups s-
panned by a single primitive vector, one which is not a multiple of another
lattice vector. If M is a sublattice then the vector space MR inherits a
metric from LR, so from every sublattice, as indeed from every discrete
subgroup, one obtains again a lattice of generally lower rank.

The volume of a lattice L is that of the compact torus LR/L, or equiva-
lently the n-dimensional volume of the parallelopiped spanned by any basis
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of L. Suppose L to have rank n. If (ℓi) is a basis of L and (ej) an or-
thonormal basis of LR and then the volume of L is the absolute value of the
determinant of the square matrix [ 〈ℓi, ej〉 ] whose i-th column is made up
of the coordinates of ℓi with respect to the basis (ej). If M is a sublattice
of rank m in L with basis ℓ1, . . . , ℓm then the volume of M is the length
of the vector ℓ1 ∧ . . .∧ ℓm in

∧mL, or in other words the square root of the
sum of the squares of the determinants of the m×m minor matrices in the
n × m matrix whose columns are the coordinates of the ℓi with respect to
any orthonormal basis of LR.

If M is a lattice, let vol(M) be the volume of the quotient MR/M , and let
dim(M) be its rank. We associate to M ⊆ L the point

ℓ(M) = (dim(M), log vol(M))

in R2, and define (following Grayson and Stuhler again) the canonical plot

of the lattice L to be the set of all points ℓ(M) as M ranges over all its
sublattices. The origin all by itself is considered to be a lattice of dimension
0 and, by convention, volume 1. It therefore corresponds to the plotted
point (0, 0). If M has rank one then its volume is the length of a generator.
Since the lengths of vectors in a lattice are bounded below so are the plots
(1, log vol(M)) as M ranges over all rank one sublattices. For M of rank m
the volume of M is the same as the volume of the rank one sublattice lattice
∧m

M in
∧m

L, and again the point (m, log vol(M)) must be bounded from
below by a constant depending only on L. Define the profile of L to be
the polygonal boundary of the convex hull of its canonical plot. The plot
of a lattice is just about impossible to compute in any sense, but its profile
can be computed (in principle) by finding the shortest vectors in each of its
exterior products. In practice, this is an infeasible computation for large
dimension.

Since there exist arbitrarily long primitive vectors in L and more generally
lattices of any rank smaller than n = dim(L) of arbitrarily large volume,
we may as well add to the profile the points (0,∞) and (n,∞). The sides
of the profile are therefore vertical. Its bottom is a convex polygonal line
from (0, 0) to (n, log vol(L)) if n is the rank of L.

The profile will contain inside it at least the convex hull of the four points
(0,∞), (0, 0), (n, log vol(L)), (n,∞), and it may happen that this is all of
it. When this is the case, L is said to be semi-stable. When this is not the
case, the profile of Λ will lie strictly below the straight line from (0, 0) to
(dim(L), log vol(L)).

Here, for example, is the plot we get from the three-dimensional lattice with
basis (1, 1, 2), (2, 0,−3), (2, 1, 5) scaled suitably to obtain a unit lattice:
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As in the earlier two-dimensional plot, the gaps at the bottom are signifi-
cant, as we shall see in Proposition 4.3.

If M is a sublattice of L, then the projection from LR/MR onto the or-
thogonal complement of MR in LR is an isomorphism, and in this way the
quotient space inherits a metric from that on LR. The quotient group L/M
in the quotient space together with this metric defines therefore a lattice,
the quotient lattice.

Suppose M to be a sublattice of L with basis (mi), (ei) to be an orthonormal
basis of MR, (nj) to be a complement to M in a basis of L. Suppose also
that the fj extend the ei to an orthonormal basis of L. Then 〈m, fj〉 = 0
for m in M , and the volume of L is

vol(L) =

∣

∣

∣

∣

det

[

〈m, e〉 〈n, e〉
〈m, f〉 〈n, f〉

]∣

∣

∣

∣

=

∣

∣

∣

∣

det

[

〈m, e〉 〈n, e〉
0 〈n, f〉

]
∣

∣

∣

∣

= |det [ 〈m, e〉 ]| |det [ 〈n, f〉 ]| .

The columns of the matrix [ 〈n, f〉 ] are the coefficients of the projections
of the nj onto the orthogonal complement of M , and its determinant is
therefore the volume of the quotient lattice L/M . It donates one term
among several non-negative terms to the volume of the sublattice of L
spanned by the ℓj . All in all, as a generalization of the formula A = b · h
for the area of a parallelogram spanned by a two-dimensional lattice:

Proposition 4.1. If M is any sublattice of L then

vol(L) = vol(M) vol(L/M)
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and if N is any sublattice of L complementary to M then

vol(N) ≥ vol(L/M) .

The second assertion generalizes the simple fact that the length of the
orthogonal projection of a vector cannot be larger than the length of the
vector. It reduces to that result, in fact, if one considers exterior powers
of L. As first pointed out by Stuhler, it has a simple useful generalization,
when it is applied to the lattices M/M ∩ M∗ and M∗/M ∩ M∗ in M +
M∗/M ∩ M∗:

Corollary 4.2. If M and M∗ are any two sublattices of L then

vol(M + M∗)

vol(M)
≤ vol(M∗)

vol(M ∩ M∗)

or equivalently

vol(M + M∗) vol(M ∩ M∗) ≤ vol(M) vol(M∗)

This result is expressed by Grayson in additive terms:

Proposition 4.3. (Grayson’s parallelogram rule) Suppose that M and M∗

are sublattices of L. Then

log vol(M) ≥ log vol(M + M∗) + log vol(M ∩ M∗) − log vol(M∗) .

Why is it called the parallelogram rule? We have a short chain of lattices

M∗ ∩ M ⊆ M∗ ⊆ M∗ + M .

Let
d = dim(M + M∗) + dim(M ∩ M∗) − dim(M∗)

ℓ = log vol(M + M∗) + log vol(M ∩ M∗) − log vol(M∗) .

Then d is the dimension of M . The Stuhler-Grayson inequality says neither
more nor less than that the point ℓ(M) = (dim M, log vol(M)) lies on or
above the point (d, ℓ). It will lie exactly at (d, ℓ), furthermore, if and only if
M∗ and M project to orthogonal lattices in (M + M∗)/(M∗ ∩M). But the
point (d, ℓ) is the fourth corner of a parallelogram whose other vertices are
ℓ(M ∩M∗), ℓ(M∗), and ℓ(M + M∗). The useful situation is that illustrated
below:
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M

(d, ℓ)

M∗

M ∩ M∗

M + M∗

The vertices of a profile are its extremal points, where it actually bends.
The points (0, 0) and ℓ(L) = (n, log vol(L)) are certainly vertices. The first
of two main results in this theory concerns other possibilities.

Lemma 4.4. Suppose M∗ to be a lattice with ℓ(M∗) a vertex on the profile.
Whenever M is any other lattice with ℓ(M) on the profile we must have
either M ⊆ M∗ or M∗ ⊆ M .

Proof. Start off by letting M be arbitrary, M∗ a vertex of the profile.

M

M∗

M ∩ M∗

M + M∗

Then M∩M∗ will lie somewhere to the (inclusive) left of both, and M +M∗

will lie somewhere to the (inclusive) right of both. The parallelogram whose
bottom boundary is M ∩ M∗, M , M + M∗ will, by the parallelogram rule,
lie underneath M . Unless it is one-dimensional, M will be separated from
the profile. Therefore if M lies on the profile, the parallelogram must be
degenerate, and this means that either M ∩ M∗ = M∗ and M∗ ⊆ M , or
M + M∗ = M∗, in which case M ⊆ M∗. QED

As a consequence:

Theorem. (a) The sublattices of L giving rise to the vertices of the profile
of L are unique. (b) Any set of sublattices corresponding to extremal points
of the profile form a flag.

This flag is called by Grayson the canonical filtration of L. I call it the
canonical flag. A lattice is semi-stable if and only if its canonical flag is
trivial.

If M ⊆ L is the sublattice corresponding to a vertex (i, ℓ) of the profile of
L, then that part of the polygon of L running from x = 0 to x = i is the
profile of M , and that part running from x = i to x = n is a translation of
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that of L/M . If N occurs in the canonical flag of L and contains M then
N/M occurs in the canonical flag of L/M .

Here is another corollary of the Lemma.

Theorem. (Grayson’s criterion) Suppose

L0 = {0} ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lk = L

to be a flag with the property that each quotient Li/Li−1 is semi-stable,
and such that the slope of (Li−1, Li) is less than the slope of (Li, Li+1).
Then this flag is the canonical flag.

Proof. Suppose M to be any other sublattice of L. We want to know that
ℓ(M) lies above the plot P of the ℓ(Li). We prove by induction that if
M ⊆ Li then this is so. For i = 1 this is immediate.

M

Li−1

Li
M ∩ Li−1

M + Li−1

Suppose that M ⊆ Li with i > 1. Then M + Li−1 is contained in Li and
contains Li−1, hence its plot lies on or above the segment (Li−1, Li). By
induction, the plot of the intersection M ∩ Li−1 also lies on or above P .
The parallelogram rule thus implies that the plot of M also lies on or above
P . QED

An isomorphism of two lattices takes the canonical flag of one into that of
the other. The canonical plot and profile of a lattice are therefore invariants
of the isomorphism class of a lattice, as is the GL(L)-conjugacy class of the
canonical flag.

In general, if p is a function defined on the integer interval [0, n], I’ll call its
profile the polygon that starts at (0,∞), then follows segments (i, p(i)) in
increasing order of i, and finally goes up to (n,∞). The convex ones among
these are the profiles of lattices. The polygons obtained in this way I’ll call
profile polygons.

5. The geometry of acute cones

This section is largely a self-contained account of a simple geometrical con-
struction first applied in this subject in [Langlands:1989]. The new feature
here is the connection with Grayson’s diagrams.
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Suppose ∆ to be a set of linearly independent vectors in a Euclidean space
V . Let P be a basis of V . I define a weight map to be a map α 7→ ̟α

from ∆ to P satisfying the condition that for all ̟ in P

̟•α =
{

1 if ̟ = ̟α

0 otherwise.

Fix V , ∆, P , and a weight map for the rest of this section. The subspace
of V perpendicular to ∆ is complementary to the subspace spanned by the
image of the weight map; let P be a basis of V extending that image and
containing a basis of that complement.

For each Θ ⊆ ∆ let Θ⊥ be the subset of the ̟ in P that are perpendicular
to the α in Θ, and let

νΘ = orthogonal projection onto the subspace spanned by Θ .

The map νΘ will be referred to as normalization. The set Θ⊥ is also the
complement of the ̟α for α in Θ. The vectors ̟α are by no means unique—
any of them may be translated by a vector orthogonal to all the α in ∆.
They may be made unique by imposing the condition that the ̟α all lie in
the subspace spanned by the α. I’ll not impose this condition on a weight
map, because then we would lose the very useful feature feature that

The restriction of a weight map to a subset of ∆ is still a
weight map.

I’ll fix V , ∆, and a weight map for the rest of this section.

Let C = C∆ be the open cone dual to the α in ∆—the v in V such that α•v >
0 for all α. The vector

∑

̟∈P c̟̟ lies in C if and only if c̟ > 0 whenever
̟ = ̟α for some α in ∆. The cone C is invariant under translation by
elements of ∆⊥.

̟α̟β

−α −β

C = C∅
C{β}C{α}

C∆

� = f�; �g
The faces of C are parametrized by subsets of ∆—to Θ corresponds the
face CΘ of v such that α•v = 0 for α in Θ and α•v > 0 for α not in Θ. In
addition, let VΘ be the linear subspace spanned by CΘ, that of all v with
α•v = 0 for α in Θ. Thus C∅ is C itself and C∆ = V∆, the face of lowest
dimension, the linear space spanned by the ̟ in ∆⊥. Let

πΘ = orthogonal projection onto VΘ .
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Thus πΘ and νΘ are complementary, in the sense that they add up to the
identity operator and their images are orthogonal.

The cone C also determines a partition of the whole space V —to each of
its open faces F associate the set V C

F of points p for which the point of C
closest to p lies on F . This partition is shown above in dimension 2. In
general, V C

C is just C itself. I write V ∆
Θ for V C

CΘ
.

In summary:

C∆ = {v ∈ V |α•v > 0 for all α ∈ ∆}
C∆
Θ = {v ∈ C∆ |α•v = 0 for all α ∈ Θ}

VΘ = {v ∈ V |α•v = 0 for all α ∈ Θ}
V ∆

Θ = {v ∈ V | C∆
Θ contains the nearest point to v in C∆ }

Lemma 5.1. Suppose v to be a point of V not in C, v to be a point of C,
and H the hyperplane containing v and perpendicular to v − v. Then v is
the nearest point in C to v if and only if all points of C lie on the side of H
opposite to v.

v

v

This is because of the convexity of the sphere centred at v and passing
through v.

Proposition 5.2. The points in V ∆
Θ are those of the form

v =
∑

Θ

cαα + v

where v lies in CΘ and each cα ≤ 0. In particular

V ∆
∆ =

{

∑

∆

cαα +
∑

∆⊥

c̟̟
∣

∣

∣
all cα ≤ 0

}

,

or, equivalently, it is the inverse image under orthogonal projection of the
closed cone spanned by the −∆.

Proof. Suppose v in V but not in C. Then according to the Lemma v lies
in V ∆

Θ with nearest point v if and only if the hyperplane H perpendicular
to v − v contains v on one side and C on the other. If v lies in CΘ then it
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is easy to see that H must contain a neighbourhood of v in CΘ, hence all
of CΘ. Therefore

v − v =
∑

α∈Θ

cα α ,

and since the ̟ in Θ are on the other side from v, all cα ≤ 0. The converse
is also straightforward. QED

Because the vectors in Θ are orthogonal to the face CΘ, this says that the
set V ∆

Θ is the product of two sets, and these turn out to be rather easy to
describe. The set V ∆

Θ is the intersection of π−1
Θ (CΘ) and V Θ

Θ , and V Θ
Θ is

itself the inverse image under νΘ of the closed cone spanned by −Θ.

Now I take up the class of examples that we’ll be interested in later on. Let
E = Rn with orthogonal basis εi and coordinates si. For 1 ≤ i ≤ n − 1 let
αi = εi+1 − εi, so that

αi•

(

∑

sjεj

)

= si+1 − si .

Then let ∆ = {αi | 1 ≤ i ≤ n− 1}. The subspace spanned by the αi is that
where the sum of coordinates vanishes. If for i ≤ n

̟i = −ε1 − · · · − εi

then
αi•̟j =

{

1 if i = j
0 otherwise

so that the space orthogonal to αi is spanned by the ̟j with i 6= j. Since
αi•αj = −1 if |i − j| = 1 and otherwise vanishes, the cone spanned the αi

is obtuse. That spanned by the ̟i is acute. The projection of ̟i onto the
space spanned by the αi is ν∆(̟i) = ̟i − (i/n)̟n, since ̟i•̟n = i. In
these circumstances the cone C∆

C =
{

∑

siεi

∣

∣

∣
s1 < . . . < sn

}

.

If (si) is a point of Rn, I define its profile to be the profile polygon that
moves from x = i to x = i + 1 along a segment of slope si. If it passes
through the points (i, yi) then we must have

y0 = 0, yi − yi−1 = si or yi = yi−1 + si

so that
yi = s1 + · · · + si = −̟i•

(

∑

sjεj

)

.

Proposition 5.3. The map taking a point of Rn to its profile is a bijection
of Rn with the set of profile polygons. A point of Rn lies in C if and only
if its profile is convex.

The last is true because slopes si of a profile are non-decreasing if and only
if it is convex. Going backwards, given a profile polygon I define its slope

to be the point (si) of Rn whose profile it is.
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The cone V ∆
∆ spanned by ̟n and the −αi is that of all v such that

ν∆(̟i) •v ≤ 0 for i ≤ n − 1, or equivalently where yi − (i/n)yn ≥ 0 for
1 ≤ i < n. Since (i/n)yn is the linearly interpolated y-value at x = i on
the line from (0, 0) to (n, yn), this implies:

Proposition 5.4. A profile (yi) corresponds to a point of V ∆
∆ if and only if

it lies completely above the straight line from (0, 0) to (n, yn).

In this case, its the bottom of its convex hull is just a straight line segment.

For each ℓ ≥ 0 let Iℓ = {1, . . . , ℓ} and for each I ⊆ In−1 let ΘI be the set
of αi with i in I. For each such I, the set Θ⊥

I is the set of ̟j with j in
In − I.

Proposition 5.5. A point (si) lies in the subspace spanned by ΘI if and
only if the coordinates yi vanish whenever i is in In − I.

Projection onto the linear subspace VΘ (where α•v = 0 for α in Θ) is very
nicely described in terms of profiles.

Proposition 5.6. Let Θ = ΘI be a subset of ∆. If Π is the profile of a point
(si) in Rn, the profile of the projection πΘ(s) of s onto VΘ is the polygon
obtained from Π by skipping along in straight line segments among the
vertices of Π whose x-coordinate is not in I.

In the following picture, I = {1, 2, 4}, so it skips from x = 0 to x = 3 and
then to x = 5.

Θ-projection

Proof of the Proposition. The second profile certainly satisfies the condition
that si = si+1 for i in I, which means that it lies in VΘ. The two profiles
agree at the i not in I, which means that their difference is orthogonal to
the ̟i with i not in I. But this means in turn that the difference is a linear
combination of the α in Θ.

In other words, if the original profile is (yi) then the projected one y∗ has
y∗,i = yi for i not in Θ, and for i in between two successive integers dk and
dk+1 not in I the values of y are linearly interpolated:

y∗,i = ydk
+ (ydk+1

− ydk
)

(

i − dk

dk+1 − dk

)

.
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I recall that a profile polygon is normalized by shearing it so as to place
its final vertex on the x-axis. The vertical coordinate yi is replaced by
y∗

i = yi − (i/n)yn. In terms of the slope, this is the same as ν∆.

Suppose I to be a subset of In, with lacunae dk. That is to say that dk

and dk+1 do not lie in I but all the i with dk < i < dk+1 do. Let Θ = ΘI .
The Θ-normalization of a profile shears each of the segments in the range
[dk, dk+1] so as to normalize it—i.e. so as to place its endpoints on the x-
axis. In a formula: for dk < i ≤ dk+1 the new vertical coordinate becomes

y∗,i = (yi − ydk
) − (ydk+1

− ydk
)

(

i − dk

dk+1 − dk

)

.

Θ-normalization

Proposition 5.7. If (si) is the slope of a profile, then its Θ-normalization
is its orthogonal projection onto the linear subspace perpendicular to VΘ.

Proof. The formulas show that it is the complement of πΘ, the orthogonal
projection onto VΘ. QED

Here is a few figures, illustrating the comparison between profiles and slopes.
First projection:

T

πΘ(T )

and then normalization:
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T

νΘ(T )

A partition of V gives rise to other partitions by translating the original
one. Grayson and Arthur describe partitions of C of two different kinds,
and each of these gives rise in turn, as we shall see, to a partition of Γ\X .
Grayson starts with the partition of V by the signs of coordinates, and then
shifts it by an element T of C to give one of C:

T

This was adequate for Grayson’s purposes, but the partition used by Arthur
fits more nicely into applications to automorphic forms. It just shifts the
Langlands partition by an element T .

T

C∆
∆(T )

Let C∆
Θ (T ) be the intersection of C with the translation by T of V ∆

Θ .
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T
C∆
Θ (T )

CΘνΘ(T )

πΘ(T )

Like V ∆
Θ itself, it has a relatively simple product structure, one that has a

useful description in terms of profiles. It is because of this product struc-
ture, and the consequent structure induced on a corresponding subset of
X , that Arthur’s partition is more useful in automorphic forms.

First let’s look at C∆
∆ . I’ll say that one point T∗ in Rn dominates another

point T if T∗ + V ∆
∆ contains T . The points dominated by the origin, for

example, are exactly those in V ∆
∆ . What does this mean in terms of profiles?

First of all, it is independent of normalization, since V ∆
∆ is invariant under

translation by ̟n.

Proposition 5.8. If T ∗ and T are both points in the plane ̟n•v = 0, the
point T∗ dominates the point T if and only if the profile Π of T lies entirely
above the profile Π∗ of T∗.

Π

Π∗ T

T ∗

The proof is straightforward, given the description of V ∆
∆ in Proposition

5.6.

This might be informally phrased as saying that the points in C∆
∆(T ) are T-

stable. As for the other C∆
Θ , it is easy to see that its orthogonal projection

onto the face spanned by any other CΘ is equal to the translation by πΘ(T )
of CΘ. What about the perpendicular projection? This is onto the Θ-
normalized points whose profiles are convex in the segments [dk, dk+1] and
dominated by νΘ(T ). If T has this profile:



Stability of lattices and the partition of arithmetic quotients 25

and Θ = {α3, α5} then the Θ-normalization of CΘ contains the points whose
profiles lie in this region:

Finally, the following is a geometric formulation of an observation in the
paper [Aubert-Howe:1992].

Proposition 5.9. The point of C nearest to v = (si) is that point v whose
profile is the convex hull of the profile of v.

Proof. It must be shown that v − v lies in the span of the −αi. If (i, yi)
lies on the hull then this means neither more nor less than that yi − yi ≥ 0.
This is immediate.

There is a well known algorithm to find the convex hull of any finite set
of 2D points which is particularly effective here (see Chapter 1 of [de Berg
et al.:1997]). It can be roughly described as scanning from left to right,
adjusting to avoid concave regions.

This is ridiculously efficient, since each vertex is touched only twice, and the
whole process is simply proportional to the number of points in the polygon.
I do not know of an algorithm of comparable efficiency for finding nearest
points on an arbitrary convex subset of Euclidean space, even for arbitrary
simplicial cones. Grayson’s discussion of the orthogonal and symplectic
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groups suggests a similar algorithm for the classical root systems, but each
family is dealt with in an apparently different fashion.

6. Lattice flags

Suppose L to be a free abelian group of rank n and V = L ⊗ R.

A flag F in V is an increasing sequence of real vector spaces

V0 = {0} ⊂ V1 ⊂ . . . ⊂ Vk = V .

I define the dimension of the flag to be the array (di) of dimensions of its
components, and set Θ = ΘF to be the complement of these dimensions in
{1, . . . , n}. Thus for the trivial flag {0} ⊂ V we have Θ = {1, . . . , n − 1}.
The stabilizer in GL(V ) of a flag F is a parabolic subgroup P = PF , and
the subspaces Vi are called its components. If Γ = GL(L), we know that
the quotient Γ\XV parametrizes isomorphism classes of lattices. What does
the quotient Γ ∩ P\XV parametrize?

The group L induces a rational structure on V , and a flag is called rational if
its components are rational. If F = (Vi) is a rational flag then the filtration

L0 = {0} ⊂ L1 = L ∩ V1 ⊂ . . . ⊂ Lk = V

is called a lattice flag. Because each Vi is rational, each intersection Li

is a free subgroup of L of rank equal to the dimension of Vi. If x is a
positive definite quadratic form on V then each Li becomes a sublattice.
Two lattice flags obtained from forms x1 and x2 and the same rational flag
F are are isomorphic if and only if x2 = γx1 with γ in the stabilizer of P
as well as GL(L). Therefore

The quotient Γ ∩ P\XV parametrizes lattice flags based on F .

The structure of this quotient is related to isomorphism classes of lattices
of lower rank. An element of P induces an action on each quotient Vi/Vi−1.
The map from P to

∏

GL(Vi/Vi−1) is surjective, and the kernel is the
unipotent radical NP of P . This map therefore identifies the reductive
quotient MP of P with

∏

MP,i where MP,i = GL(Vi/Vi−1). If x is a
quadratic form on V then on each Vi/Vi−1 the linear isomorphism of Vi/Vi−1

with Vi ∩V ⊥
i−1 induces a quadratic form xi on Vi/Vi−1. Every x in XV thus

also gives rise to an orthogonal decomposition of V into subspaces

V i = Vi ∩ V ⊥
i−1

∼= Vi/Vi−1 .

The reductive component MP of P may be canonically identified with the
stabilizer of the decomposition V = ⊕V i, effecting a splitting of the canon-
ical surjection from P to MP . The group AP , the centre of MP , may be
identified with the matrices acting as scalars on each V i. By choosing a
basis of V compatible with the orthogonal decomposition V = ⊕Vi, we
represent a in AP as a diagonal matrix (aj), with a acting on Vi by aj if
di−1 < j ≤ di. The map

σP : a 7−→ (aj)
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is a canonical identification of AP with the subgroup (aj) of Rn with aj =
aj+1 whenever j is not one of the di.

The image of Li/Li−1 in Vi/Vi−1 is a free discrete group of maximal rank
There exists also, therefore, a canonical map from XV to

∏

XVi/Vi−1
in-

duces a canonical map from lattices in V to an array of lattices in the
quotients Vi/Vi−1. This is P -covariant, and the fibres are the NP -orbits
in XV . The quotient Γ ∩ P\XV therefore maps onto

∏

Γi\Xi with fibres
isomorphic to Γ ∩ NP \NP , where Mi = GL(Vi/Vi−1), Γi is the image of
Γ ∩ P in Mi, and Xi = XVi/Vi−1

.

If P = gQg−1 are two conjugate parabolic subgroups, there is a canonical
isomorphism of AP with AQ, since a parabolic subgroup is its own nor-
malizer. To each each element a of AP corresponds a profile polygon—its
bottom is the unique polygonal path whose slope from x = j − 1 to j is
log |aj | where (aj) = σP (a). The slopes of such polygons make up the linear
subspace of Rn where αi = 0 for i not in the dimension of F .

The canonical plot of a lattice flag (Li) is the set of all the two-dimensional
points (dim M, log vol(M)) where Li−1 ⊆ M ⊆ Li for some i. The profile of

a lattice flag is the unique polygon which in the range [dim Li−1, dimLi] is
equal to the convex hull of this plot. The polygon in this range, translated
back to the origin, is the canonical profile Πi of Li/Li−1, which is called
its i-th segment. The map taking a flag profile Π to the sequence (Πi) of
its segments is a bijection between the set of all flag profiles and sequences
of polygons Πi satisfying the condition that Πi be the profile of a lattice of
rank dimLi − dim Li−1.

The profile contains at least the points λi = (dimLi, log vol(Li)). It need
not be overall convex, nor do the vertices of the profile have to be points
where the profile bends. Here is a typical flag profile:

λ0

λ1

λ2

These definitions are consistent with the earlier one in a trivial sense, since
the profile of a lattice L is clearly the same as that of the flag {0} ⊂ L de-
termined by L alone. But we also have a more interesting consistency. I say
that one lattice is subordinate to another if its components are components
of the other. This is straightforward to prove:

Lemma 6.1. The profile of a lattice is the same as the profile of any flag
subordinate to its canonical flag.

Any lattice may be scaled by a constant a, simply multiplying its metric
by |a|. The normalization of a lattice is the one we get by scaling it so as
to have unit volume. The effect of scaling by a on the profile of a lattice
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is to shear it, moving each point (d, ℓ) to (d, ℓ + d log |a|). The geodesic

action of Borel-Serre generalizes this operation. Suppose given a lattice
flag F and an element a of AP . Suppose that a acts as ai on Vi/Vi−1, and
therefore corresponds to an operator on all of V that acts as multiplication
by ai in V i. We can define a new lattice flag by changing the metric on V
in the natural way—if x has the orthogonal decomposition x = ⊕ xi with
xi in V i determined by F , with norm

∑ ‖xi‖2, then the new norm of x
is

∑

a2
i ‖xi‖2. For example, if a = (c, 1/c) in dimension 2 then Ra takes

z = x + iy to x + ic2y, whereas the usual fractional linear transformation
takes z to c2z. One important thing to realize about the geodesic action is
that it doesn’t preserve convexity of a profile, as this portrait of the profiles
of a lattice under transformation by the geodesic action shows:

The normalization of a lattice flag F is the lattice obtained by normalizing
each of the components in its associated graded lattice. If vi = vol(Li)
then this normalization is also RaF where a = (v−1

i ). The map taking
F to ν(F) = (v−1

i ) defines a canonical map ν from lattice flags F to the
connected component A0

P , where P = PF . A flag F is normalized if and
only if ν(F) = 1.

7. The parabolic decomposition

I review the situation before going on.

Suppose L to be a free finitely generated group, say of rank n, and V =
L ⊗ R. The space of lattices based on L, that is to say that of Euclidean
metrics on L, may be identified with XV , the space of all positive definite
quadratic forms on V . The group GL(V ) acts on XV according to the
formula

gx(v) = x(g−1v) .

Two points x1 and x2 give rise to isomorphic lattices if and only if x1 = γx2

with γ in ΓL = GL(L). If XV is the subset of lattices of discriminant 1, or
equivalently those with vol(V/L) = 1, then XV

∼= XV × Rpos. If a form x
has discriminant D then the projection takes x to (x/

√
D,

√
D).
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To each point x of XV , we associate its lattice, its profile, its canonical flag
F = Fx, the stabilizer Px of that flag, hence also the slope (array) s = sx

of its profile. Let ΘPx
be the set of i in [0, n − 1] such that si = si+1.

The profiles of lattices are precisely the convex profile polygons, so that the
image of the slope map from XV to Rn is precisely the closed cone C = C∆

where all si ≤ si+1 for 1 ≤ i ≤ n − 1.

In summary, each x in XV gives rise to a parabolic subgroup P = Px and
a point s = sx in CΘ where Θ = ΘP . As pointed out in [Ji-MacPherson
2002], the set of all such points (P, s) with P a rational parabolic subgroup
of G and s a point of CΘP

make up the interior of the cone C(|T |) on the
Tits complex |T | of G. We therefore have in this case a canonical map
from XV into this cone. Following Ji and MacPherson I call this cone the
rational skeleton of XV . I’ll call the canonical map the canonical skeletal

projection κ. Leslie Saper has pointed out to me that this cone occurs
already, in a related manner, in [Borel-Serre 1973].

If P is the rational parabolic subgroup stabilizing the flag F , then define

XP = {x | Fx = F} .

There is a canonical projection from this onto CΘP
. The space XV is the

disjoint union of the XP as P varies over all rational parabolic subgroups.
The set XG, in particular, parametrizes stable lattices. For any γ in ΓL,
γXP = XγPγ−1. The action of ΓL does not change the slope. Hence the
first part of this:

Proposition 7.1. The set XP , and more particularly the inverse image with
respect to the skeletal projection of any point of CΘP

, is stable under Γ∩P
as well as NP .

We have already seen the second part proven.

From now on let Γ be any subgroup of ΓL of finite index.

Corollary 7.2. The canonical map from Γ∩P\XP to Γ\X is an embedding.
The images of Γ∩P\XP and Γ∩Q\XQ overlap if and only if P and Q are
Γ-conjugate and in that case they are equal.

The skeletal projection κ maps XP onto CΘP
, and each fibre κ−1(s) of this

map is stable with respect to Γ ∩ P and NP . What is the structure of the
quotient (Γ ∩ P )NP \κ−1(s)?

Suppose F = (Vi) to be a rational flag and P its stabilizer, so that MP =
∏

MP,i. The projection from Vi/V ⊥
i−1 to Vi/Vi−1 to gives rise to a Euclidean

metric on Vi/Vi−1, hence a point of XVi/Vi−1
. These all together give rise

to a canonical map from XV to
∏

XVi/Vi−1
. The fibres of this map are the

orbits of NP . According to the notation introduced above, for each i the
space XMP,i

is the space of semi-stable lattices in Vi/Vi−1. The definition
in terms of profiles makes it clear that the image of XP lies in the subset
XMP

=
∏

XMP,i
of

∏

XVi/Vi−1
.

Proposition 7.3. There exists a canonical isomorphism XMP
∼= XMP

×VΘP
.
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The factorization comes from normalization on each XVi/Vi−1
.

Consideration of profiles also tells us:

Proposition 7.4. The canonical projection from XV to
∏

XVi/Vi−1
identifies

the quotient of XP by NP with the subset of XMP
whose projection onto

VΘP
lies in CΘP

.

We therefore understand the structure of XV reasonable well. In effect, we
have reduced the question of describing it to that of describing the structure
of stable unimodular lattices for all dimensions at most n. We have little
hope of understanding the space of such lattices in any non-trivial way, but
this at least is true:

Proposition 7.5. The quotient Γ\XG is compact.

Vectors in lattices in XG have bounded minimal length and the lattices
have unit volume. This therefore follows from Mahler’s criterion, which I’ll
recall in the next section.

From the canonical skeletal projection κ a whole family of skeletal projec-
tions can be constructed. They are parametrized by points of C = C∆.

T

C∆
∆(T )

Let T be an arbitrary point of C. First of all define XG(T ) to be the set of
all x in X for which the slope sx lies in C∆

∆(T ), the points of C dominated
by T . If T = 0 these are just the usual semi-stable lattices, and in general
I’ll call them T-stable. Let XG(T ) be the intersection of XG(T ) with X.
Both of these are stable under ΓL. If T lies in the face CΘ then XG(T )
contains points in all the XP with Θ ⊂ ΘP .

Proposition. 7.6. The quotient Γ\XG(T ) is compact.

This also follows from Mahler’s criterion.
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T
C∆
Θ (T )

CΘνΘ(T )

πΘ(T )

Let P be a rational parabolic subgroup and Θ = ΘP . Let XP (T ) be those
x in XQ with Q ⊆ P for which the slope lies in CΘ(T ). This agrees with
the earlier definition of XG(T ). The product structure of CΘ(T ) described
in the earlier section on the Langlands decomposition shows that this has
the product structure AP (T )/A ∩ K times

∏

XVi/Vi−1
(T ), where AP (T ) is

the inverse image in A0
P of πΘ(T )+CΘ. Note that A0

P
∼= CΘ via logarithms,

and the right action of A0
P is compatible with this. The skeletal projection

κT associated to T takes a point in XP (T ) to the point x πΘ(sx)− πΘ(T ),
which lies in CΘ. The previous results for the sets XP have straightforward
analogues for XP (T ).

There is one final useful remark. Suppose P to be a maximal rational
parabolic subgroup of GL(V ). F the corresponding flag V0 ⊂ V1 ⊂ V . Let
d be the dimension of V1, I the complement of d in In, Θ = ΘI .

To each x in XV corresponds a lattice flag F ∩ L, and hence to each x
the profile of this flag, a point in Rn in the region αdP

ge0, and then the
projection onto the line containing CΘ. Define X+

P (T ) to be the inverse
image of πΘ(T ) + CΘ in X . The following is a basic fact of reduction
theory, but as far as I can say it was first observed by Arthur.

Proposition 7.7. For any T in C the XG(T ) is the complement of the union
of X+

P (T ) as P ranges over the maximal rational parabolic subgroups of G.

On the one hand the region C∆(T ) is the complement in C of the projections
onto the lines πΘ(T ) + CΘ. This means that XG(T ) is contained in the
intersection. On the other, if x lies in one of these regions then the profile
of x has to lie below the profile of πΘ(T ), and x cannnot lie in XG(T ).

8. Mahler’s criterion

I formulate here a variant of Mahler’s criterion for the relative compactness
of a set of lattices.

Suppose A and B to be positive numbers, E a Eucidean real vector space
of dimension n. I define a weakly reduced frame in E with respect to A
and B to be any subset of n vectors vi satisfying the following conditions:



Stability of lattices and the partition of arithmetic quotients 32

• ‖vi‖ ≤ B for all i;
• for each j the projection of vj onto the subspace perpendicular to v1,

. . . , vj−1 has length at least A.

Since projections do not increase length, the second condition implies also
that the projection of any vi with i ≥ j onto the subspace perpendicular to
v1, . . . , vj−1 has length at least A. Recursively, this definition amounts to
requiring that (1) A ≤ ‖vi‖ ≤ B for all i and (2) the projections v⊥i (i ≥ 2)
perpendicular to v1 form a weakly reduced frame of dimension one less for
A and B.

In these circumstances the volume of the parallelopiped spanned by the vi

is at least An. As a consequence, any weakly reduced frame is actually a
frame—i.e. a basis of E—and for a given A and B the set of all associated
frames is a compact subset of frames.

Theorem. There exist for every a, K > 0 and positive integer n constants
A and B such that if L is any lattice of dimension n, with volume at most
K and all its vectors of length a or more, then L possesses a basis which is
weakly reduced with respect to A and B.

From this it follows immediately that every Γ\Xn(T ) is compact.

Proof. For n = 1 the Theorem is clear, since volume and length are the
same.

The proof continues by induction on n. In the proof it will be shown that
one may choose A to be (

√
3/2)n−1a, and I’ll take this to be part of the

induction assumption. Let µn be the volume of the unit ball Bn(1) in
Euclidean space Rn. A classic theorem of Minkowski asserts that if we
choose r so that

vol(Bn(r)) = µnrn ≥ 2nvol(L) or r ≥ 2 (vol(L)/µn)
1/n

then L will contain a vector inside B(r). Since the volume of L is bounded
by K, if we choose r = b = 2(K/µn)1/n we can find a vector v1 of length
at most r inside L. We may assume it to be a vector of least length in L,
and in particular that it be primitive in L. The vector v1 now satisfies the
conditions

a ≤ ‖v1‖ ≤ b .

I claim that the quotient L∗ = L/Zv1 satisfies the same conditions as those
on L, but of course with possibly different constants a∗, K∗. First of all,
the volume of L∗ is equal to vol(L)/‖v1‖, which is at most K∗ = K/a. It
remains to show that the lengths of vectors in L∗ are bounded from below
by a suitable constant. This result is made more explicit in the following
result, which is an easy consequence of Lagrange’s Lemma.

Lemma 8.1. If
‖v‖ ≥ a

for all non-zero vectors in L then

‖v∗‖ ≥ a∗ =

√
3

2
a
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for all non-zero vectors v∗ in L∗.

Proof. Choose v representing v∗ as suggested by Lagrange’s Lemma. Thus
v = v∗ + αv1, with |α| ≤ 1/2, and

‖v∗‖2 + α2‖v1‖2 = ‖v‖2

Since v1 has least length, we also have

‖v‖2 ≥ ‖v1‖2, ‖v∗‖2 ≥ (1 − α2) ‖v1‖2 ≥ (3/4) ‖v1‖2 ≥ (3/4)a2

which concludes the proof of the Lemma.

To conclude the proof of the Theorem, note that by the induction assump-
tion we can find a basis (v∗,i) (for i ≥ 2) of L∗, A∗ = (

√
3/2)n−1a and

B∗ > 0 satisfying its conclusion. We may lift each v∗,i to a vector vi with
|vi•v1| ≤ ‖v1‖2/2. The vi form a basis of L. But now we have

‖vi‖2 = ‖v∗,i‖2 + ‖ui‖2 ≤ (B∗)
2 + b2/4

if ui is the projection of vi onto the line through v1. This proves the
theorem, with A = A∗ and B =

√

(B∗)2 + b2/4. QED

This proof is (of course) not much different in substance from either of the
proofs found in §1 of [Borel 1972] or Chapters V and VIII of [Cassels 1959],
but is perhaps somewhat more direct.
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