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w 1. The Main Theorem 
Almost all of the general facts about abelian varieties which we use 

without comment or refer to as "well known" are due to WEIL, and the 
references for them are [12] and [3]. Let k be a field, k its algebraic 
closure, and A an abelian variety defined over k, of dimension g. For  
each integer m >  1, let A m denote the group of elements aeA(k) such that 
ma=O. Let l be a prime number different from the characteristic of k, 
and let T~(A) denote the projective limit of the groups A~ with respect 
to the maps A~n.l~Av,  which are induced by multiplication by l. 
It is well known that Tt(A) is a free module of rank 2g over the ring 
Z l of l-adic integers. The group G=Gal(k./k) operates on Tt(A). 

Let A' and A" be abelian varieties defined over k. The group 
HOmk(A', A") of homomorphisms of A' into A" defined over k is Z-free, 
and the canonical map 

(1) Z~ | Homk(A', A") ~ Hom~(T~(A'), Tt(A")) 

is injective. The aim of this paper is to prove the following result and give 
some applications of it. 

Main Theorem. If  k is finite, the map (1) is bijective. 
In case A' and A" are elliptic curves this theorem is an easy conse- 

quence of results of DEURING [2], as Mumford pointed out to me four 
years ago. The proof in the general case uses methods similar to those of 
DEURING, except that one must keep track of polarizations. I heartily 
thank S. LICHTENBAUM for having suggested to me that a proof might 
be based on the fact that a hypothesis like the one labelled Hyp (k, A, d, l) 
in w 2 below holds when k is finite. 

One can hope [10] that the map (1) is bijecfive for fields k which are 
finitely generated over the prime field. SERRE [7] and [8] has proved this 
for elliptic curves over number fields in case either A' =A", or the modu- 
lar invariant of one of the curves is not an algebraic integer. Since the 
methods of this paper may possibly be of use over non-finite fields I have 
axiomatised them to some extent, postponing the assumption that k is 
finite until the end of the proof in w 2. 
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We conclude this introductory section with four easy lemmas which 
give rather trivial but useful variants of the statement that the map (1) 
is bijective. Let 

V~(A) = Q, | T~(A) 

denote the vector space of dimension 2g over the field Ql of l-adic 
numbers which is obtained by tensoring Tz(A ) with Qt over Zl, and 
consider the map 

(2) Q, | Somk(A', A") ~ Soma(Vl(A'), VI(A")). 

Lemma 1. The map (2) is injective, and the bijectivity of( l )  is equivalent 
to that of (2). 

Indeed (2) is obtained by tensoring (1) with Qt over Zt,  and Qt is 
flat over Zt. Hence the lemma follows from the fact that (1) is injective 
with torsion-free cokernel. This last-mentioned torsion-freeness comes 
from the fact that if a k-homomorphism f :  A ' ~ A "  vanishes on (A')t, 
then there is a k-homomorphism g: A' -~A"  such that f= Ig .  

Lemma 2. The following statements are equivalent: 
(i) The map (2) is bijective for every pr ime/#char(k) .  

(ii) The map (2) is bijective for one such 1, and the dimension over Ql 
of the right hand side of (2) is independent of L 

This is clear because (2) is injective for all I, and the dimension of the 
left hand side of (2) is independent of /, being equal to the rank of 
Homk(A', A"). 

Lemma 3. To prove (2) bijeetive for all pairs of abelian varieties A' 
and A"  over a given field k it suffices to prove that the map 

(3) Qt | Endk(A) -~ EndG(Vt(a)) 

is bijective for every abelian variety A defined over k. 

More precisely, the bijectivity of (2) for a given pair A' and A" 
follows from that of (3) for A =A' x A". This follows immediately from 
the formula 

Endk(A' x A") = Endk(A' ) x Homk(A' , A") x Homk(A" , A') x Endk(A") 

and the analogous formula for the ring of G-endomorphisms of 

Vl (A' • A") ~ Vt (A') • lit (A"). 

Consider now the two commuting subalgebras Et and F l of the 
Qt-algebra End(Vl(A)) which are defined as follows: 

E t --the image of Qt | Endk(A) by the map (3). 
10 Inventiones math., Vol. 2 
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F t= the  subalgebra of End(V~(A)) generated by the automorphisms 
of VI(A) defined by elements of G. 

Lemma 4. I f  F ! is semisimple, the bijectivity of (3) is equivalent to 
the fact that Fl is the commutant of El in End(Vl(A)). 

This follows from the semisimplicity of El and the theorem of bi- 
commutation [1], because the bijectivity of (3) just means that El is the 
commutant of Fl in End(Vz(A)). 

w 2. The Proof 
Consider the following hypothesis concerning an abelian variety A 

defined over a field k, a prime l, and an integer d_>__ 1 : 
Hyp(k, A,d, l ) :  There exists (up to k-isomorphism) only a finite 

number of abelian varieties B defined over k such that: 
(a) There exists a polarization ~9 of B of degree d 2 defined over k. 
(b) There exists a k-isogeny B ~ A of l-power degree. 

If k is finite, then Hyp(k, A, d,/)  is satisfied, even if one replaces (b) by 
"dim B =g". This can be seen either by means of the moduli schemes [5], 
or simply because the polarization 3 ~b gives a projective imbedding of B 
in P3n-~ of degree 3~d(g!) defined over k; for this and more precise 
information about projective imbeddings of abelian varieties, see MU~- 
FORD [6]. Whether or not Hyp(k, A, d, l) holds for number fields k, 
or for fields k finitely generated over the prime field seems to be an in- 
teresting diophantine question. The answer is yes when A is an elliptic 
curve, as follows from a result announced by SHAFARYEVITCH [9], the 
proof of which seems to depend on SIEGEL'S theorem on integral points 
on affine curves and its generalizations. 

Let -4 be the dual of A and let (x, ~ ) ~  (x, ~)  denote the canonical 
^ 

pairing of Vt(A) and^Vl(A) into Vl(Gm) which is induced by the "e,,- 
pairings" of Am and Aminto the group of m-th roots of unity for m=l" 
and n ~ or. Let 0: A ~ A  be a polarization of A defined over k, that is, 
a k-isogeny which, over k, is of the form A(L) for some ample invertible 
sheaf L on A xkk, in the notation of [5]. Let d2 =deg 0, and let 

H~(x, y) = (x, 0 y)  

be the non-degenerate alternating bilinear form on VI(A ) with values in 
Vz(Gm) corresponding to O. 

Proposition 1. Suppose that Hyp(k, A, d, l) is satisfied. Let W be a 
subspace of V t ( A) which is maximal isotropic with respect to the form Ha and 
stable under G. Then there exists an element u~E l such that u(Vl(A)) = W. 
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Let T=T~(A) and V= Vz(A). For  each integer n > 0  put 

X,=(Tr~ W)+l"T.  

Then X, is a Zrsubmodule of T of index l "~ and stable under G. It follows 
that there exists an abelian variety B(n) and an isogeny f , :  B ~ A  of 
degree l "~ defined over k such thatf,(Tl(B(n))) =X,.  

I claim that B(n) has a polarization ~O,=l-nf*(~) defined over k. 
Indeed, f* (O)=f  9 f  is a polarization of B(n) defined over k of degree 
l 2g" d z. The corresponding alternating form is given by 

H f .  (a)(x, y) = <x, .f ~ f y)  = Ha ( f  x, f y) . 

The values taken by this form on Tl(B(n)) are therefore the same as the 
values taken by Ha on f(Tz(B(n)))=X. =(Tc~ W)+  P T. These latter are 
divisible by l" because W is isotropic for Ha, and Ha takes integral values 
(i.e., values in TI(G,,)) on T. By the proposition on the last page of 
WEIL [12], we conclude that there exists a polarization 0 .  of B(n) such 
that rr This ~.  is defined over k because f*(O)  is, and its 
degree is I -  2 g"deg f * (~) --d 2 . 

By Hyp(k, A, d, l) it now follows that the number of k-isomorphism 
classes of the abelian varieties B(n) is finite. Therefore there exists an 
infinite set I of positive integers such that for i e I  the B(i) are all isomor- 
phic to each other over k. Let n be the smallest integer in I and for each 
i e I  let vi: B(n)-}B(i) be a k-isomorphism. Put u i =f~ vif~" 1 which has 
meaning in Q|  and therefore in E~. We have ui(X.)=Xi, 
and in particular ui(X,)c X.. Since End(X.) is compact we can extract 
from (u~)i~i a subsequence (uj)j~s which converges to a limit u, and this 
limit is in E~ because E l is closed. Since X, is compact, u(X.) consists of 
the elements of the form x =lim xj, where xjeuj(X.)=Xi;  and since the 
sets Xj are decreasing it follows that 

u(X,)= A Xj= T n W. 
j ~ J  

Hence u(V)= W, which proves the proposition. 
Proposition 2. Suppose that Hyp(k,  A, d, l) is satisfied and that the 

Qralgebra Fl is isomorphic to a product of copies of Q l. Then the map(3) 
of Lemma 3 is bijective. 

Let D be the commutant of Et in End(Vl(A)). Let W be an isotropic 
subspace of V= VI(A) which is stable under Fl (i.e., under G). I claim 
that W is also stable under D. If Wis maximal isotropic, i. e., if dim W=g, 
then by Proposition 1 we have W = u V  for some u~Et, hence D W =  
Du V=uD V = u V =  W as claimed. Suppose now dim W<g. The ortho- 
gonal complement W ~ of W is stable under G, hence under F~, and in 
10" 
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virtue of our hypothesis on Ft we have a direct sum decomposition 

W ~  W O ~ Li 
i = l  

with each L, of dimension 1 over {2, and stable under F t . Since 
m = 2 ( g - d i m  W)>2 ,  we have W= W 1 c~ W2, with W,= WDL~ isotro- 
pic, stable under F~, and of dimension strictly greater than W. Since the 
intersection of stable subspaces is stable, our claim now follows by 
descending induction on dim W. 

Applying this result with dim W= 1 we see that every eigenvector 
of Fe in Vis an eigenvector of D. It follows that D c F  t (the decomposition 
of V into factors V~ corresponding to the simple factors of Ft reduces this 
assertion to the evident statement that an endomorphism of V, for which 
every element of Vi is an eigenvector is a scalar multiplication). Since 
F i c D  trivially, we conclude that FI=D, and by Lemma 4 the map (3) 
is bijective. 

From now on we suppose k is finite. Then, as we have seen, Hyp(k, A, 
d, l) is satisfied, and Proposition 2 applies. Let n be the Frobenius endo- 
morphism of A relative to k, and let F = Q ( n )  be the subalgebra of 
E = Q  | Endk(A) generated by n. The effect of n on A (k), and therefore 
on Vz(A), is the same as that of the Frobenius automorphism of k/k, 
which is a topological generator of G. This shows that F is in the center 
of the semisimple algebra E and is therefore itself semisimple, and it also 
shows that F~,.~QI | By Proposition 2 we conclude that the map (3) 
is bijective for the prime numbers l which split completely in F. The 
existence of such l is well known. Therefore, by Lemma 2, we have only 
to show that the dimension of Enda(Fl(A)) is independent of l, in order 
to complete the proof of the main theorem via Lemmas 1 and 3. 

More generally, let B be another abelian variety over k and let fA 
and f~ be the characteristic polynomials of the Frobenius endomorphisms 
nn and nB of A and B, respectively. Let K be an extension of Q and let 

fA = I-I pa (P) and fB = 1-I pb (P) 

be the canonical factorization of )ca and fB as products of powers of 
distinct irreducible polynomials P over K. Comparing these factorizations 
over K with the corresponding factorizations over Q one sees that the 
integer 

(4) r(fA, fB) = ~ a (P) b (e)  deg P 
P 

is independent of K. Taking K=Q~ and using the fact that n~ and nB 
induce endomorphisms of Vz(A) and Vt(B) which are semisimple with 
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characteristic polynomials f a  and fn  one sees that 

(5) dim Hom~ (V~ (A), Vl (B)) = r ( fa ,  f s ) .  

Since the right hand side is independent of/,  our main theorem is proved. 

w 3. Applications 
In this section we list some immediate consequences of the main 

theorem. 
Theorem 1. Let A and B be abelian varieties over a finite f ie ld  k, and 

let f a and f B be the characteristic polynomials of their Frobenius endo- 
morphisms relative to k. Then 

(a) With r defined as in (4) above we have 

rank (Hom~ (A, B)) = r ( fa ,  f~). 

(b) The following statements are equivalent: 
(b 1) B is k-isogenous to an abelian subvariety of A defined over k. 
(b2) Vl(B) is G-isomorphic to a G-subspace of Vt(A) for  some L 
(b 3) fB divides )cA. 

(c) The following statements are equivalent: 
(c 1) A and B are k-isogenous. 
(c2) fA =fB. 
(C3) The zeta functions of A and B are the same. 
(c4) A and B have the same number of  points in k'  for every finite 
extension k' of k. 

The formula for the rank of HOmk(A, B) follows from the bijectivity 
of the map (2) and formula (5). 

If q~: B ~ A is a k-homomorphism, then the dimension of the kernel 
of ~ot: V t ( B ) ~  V~(A) is twice the dimension of Ker tp. Thus q~ has a finite 
kernel if and only if tpz is injective. This shows (b 1)=~(b2). Conversely, 
if u: Vt(B) ~ Vl(A) is an injective G-homomorphism, then by our main 
theorem there exist elements ~oeQ |  A) such that q~ is arbi- 
trarily close to u in Hom(Vt(B), Vt(A)). A ~o I sufficiently close to u is 
injective, and a suitable multiple of the corresponding ~o is in Homk (B, A) 
and has finite kernel. Hence (b2)=~(b 1). 

The implication (b2)=~ (b 3) is trivial, and the converse follows from 
the fact that the Frobenius endomorphisms 7~ a and na act semisimply 
on Vl (A) and Vt (B) with characteristic polynomials f a  and fB. 

The equivalence of (c 1) and (c2) follows from that of (b 1) and (b3). 
The equivalence of (c2), (c3), and (c4) is well known. 
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Theorem 2. Let A be an abelian variety of dimension g over a finite 
field k. Let rt be the Frobenius endomorphism of A relative to k and f its 
characteristic polynomial. 

(a) The algebra F = Q  [Tz] is the center of the semisimple algebra 
E = Q | End k (.4). 

(b) We have 
2 g < [ E : Q ] = r ( f , f ) < ( 2  g) 2. 

(c) The following statements are equivalent: 
(el) [E: Q l=2g .  
(c2) f has no multiple root. 
(c3) E = F .  
(c4) E is commutative. 

(d) The following statements are equivalent: 
(dl)  [E: Q]=(2g)  2. 
(d 2) f is a power of a linear polynomial 
(d3) F=Q.  
(d4) E is isomorphic to the algebra of g by g matrices over the 
quaternion algebra Dp over Q which is ramified only at p and 0o. 
(d 5) A is k-isogenous to the g-th power of a super-singular elliptic 
curve, all of whose endomorphisms are defined over k. 

(e) A is k-isogenous to a power of a k-simple abelian variety if and 
only if f is a power of a Q-irreducible polynomial P. When this is the case 
E is a central simple algebra over F which spBts at all finite primes v of F 
not dividing p =char(k), but does not split at any real prime ofF. 

By Lemma 4 and our main theorem we know that F~ =Qt  |  is the 
center of E~ =Q~ @ E. It follows that F is the center of E. 

Let 
$ 

f ( T )  = I-I ( T -  n~) ~' 
i = I  

with the zi distinct and m~> 1. Then ~.mi = d e g f = 2 g ,  and by theorem 
l(a), we have [E: Q ] = r ( f , f ) = ~ m ~ ,  so (b) follows from the obvious 
inequalities 

(.) Z m,_-<Z m,) 

We have equality on the left of (*) if and only if m t = 1 for all i, 1 < i_~s, 
and from this the equivalence of the four statements under (c) follows 
easily, once we note that, since F i s  semisimple, [F: Q] =s, the number of 
distinct roots of f .  
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We have equality on the right of (*) if and only if s = 1, and this shows 
the equivalence of (dl) ,  (d2), and (d3). If F=Q, then E is a simple 
algebra with center Q for which El =Ql  | E is isomorphic to End(Vl(A)) 
for all l:#p =char(k).  Thus the local invariants of E are 0 at all primes 
of Q except possibly at the archimedean prime ~ and at the prime p. 
Since the invariant at ~ is 0 or  89 and the sum of the invariants is 
- 0 ( r o o d  1), the invariant at p is 0 or  89 and we conclude that E iseither 
the algebra M2g(Q ) or Mg(Dp). The first possibility is excluded, because 
an abelian variety of dimension g cannot be isogenous to the 2g-th power 
of an abelian variety. Therefore E~M,(Dp), and there is a k-isogeny 
A,~B g, where B is an elliptic curve with Q | Endk(B)~ Dp. Conversely, 
if this last is true, then EgM~(Dp) and the center F o r  E is Q. Thus (d3), 
(d4), and (d5) are equivalent. 

As is well known, there is a unique factorization of A, up to k-isogeny, 
into a product of powers of non-k-isogenous k-simple abelian varieties Aj. 
This factorization corresponds to the decomposition of the semisimple 
algebra E into simple factors El,  and therefore to the expression of its 
center F as a product of fields F~. The F] in turn correspond to the Q-ir- 
reducible factors Pj of f .  Thus A is isogenous to a power of a k-simple 
abelian variety if and only if f is the power of a Q-irreducible polynomial 
P. Assume this is so. Then E is simple with center F. Let l be a rational 
prime number different fromp. Then Vt (A) is a free module of rank m over 

F~=Q,| F=H F,, 
vii 

where m is the multiplicity of the roots of f .  By our main theorem, the 
algebra FI| l is isomorphic to EndF~(V~(A) ), that is, 
to the algebra of m by m matrices over F t. Hence E splits at all primes v 
dividing 1. 

Now suppose F has a real prime v. We may then view ~ as a real 
number, which, by the Riemann hypothesis, has absolute value I/q, 
where q = C a r d  k. Consequently n is a root of the polynomial T2-q. 
If q is a square in Q, then ~ is rational, F= Q, and we conclude from part 
(d) that E is a matrix algebra over the quaternion algebra D, ,  which does 
not split at oo. Suppose now that q is not a square in Q. Then F= Q (VP) 
is a real quadratic field. Using a superscript "prime" to denote the al- 
gebras attached to A relative to the quadratic extension k' of k we have 

F ' c F c E c E ' ,  

and E is the commutant of F in E' .  Hence, in the Brauer group of F we 
have E,~E' | Since n ' = n 2 = q ,  we have F'=Q; hence by part (d), 
E '  is a matrix algebra over the quaternion algebra Dp. And since Dp does 
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not split over R it follows that E does not split at either of the real primes 
of F. 

This concludes the proof of Theorem 2, but raises the question of the 
local behavior of E at the primes v of F which divide p, in the situation 
just discussed when f is a power of a Q-irreducible polynomial P. From 
Theorems 1 and 2 it follows easily that the class of E in the Brauer group 
of F depends only on P or, what is the same, on F=Q(rt), as abstract 

fieM furnished with the generator n. Thus we see a priori that there must 
be a rule for computing the local invariants of E at the primes v of F in 
terms of n. In fact the rule is as follows: 

For  each prime v of F, including the archimedean primes, let I] n [Iv 
denote the normed absolute value of n at v, and define iv by 

( 6 )  l[ n ][ v = q - i v ,  

where q is the number of elements in k. Then 

(7) invv(E)= io(mod Z) for all primes v of F. 

To see that this rule checks with part (e) of Theorem 2 for the primes 
v not dividing p, recall that n is an algebraic integer, all of whose conjuga- 
tes have (ordinary) absolute value l /q ,  and whose absolute norm is there- 
fore a power of p. Consequently iv = - 1 for v complex, iv = -  8 9  for v real, 
and i v =0  for v finite not dividing p. We do not give the proof of (7) for 
primes v dividing p in this paper, because it involves the consideration 
of the formal group which plays the role of Tp(A), its Dieudonn6 module, 
and its endomorphism ring, as in MANIN [4], and would lead us too far 
afield. 

Note that, granting (7), the "product  formula"  H I] n Nv=l implies 
the "reciprocity law" ~ i v - 0 ( m o d  Z) for the algebra E. Using (7) one 
can express the dimension g'  of the k-simple constituent A' of A in terms 
of n. The result is g' = 89 deg re, where m is the least common denomina- 
tor of the numbers i~ in (6). Indeed, by (7) this m is the period of E in the 
Brauer group of F, hence m 2-- [E':  F], where E '  is the division algebra 
corresponding to E, that is, the endomorphism algebra of A'. 

We now consider schemes X, Y,. . .  projective and smooth over a 
finite field k, whose geometric fibres 

(8) 

are irreducible. Let 
canonical map 

(9) 

X = X  • k, ... 
k 

C(X) denote the following conjecture [10]: The 

Q, | NS,(X) - ,  [H, ~ (~)(~)]~ 
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is bijective for all primes/+char(k), where NSk(X) denotes the N6ron- 
Severi group of X over k, and where H~ z (X)(1) denotes the &ale cohomo- 
logy group of X with coefficients in Qz, twisted by Vt(G,,), as explained 
in [I0]. 

Theorem 3. C(X) and C(Y) imply C(X x Y). 
To see this one compares the decomposition 

NS k (X x Y)= NSk(X) x NS k ( r) x D Ck(X, Y) 

(DC denotes divisorial correspondences) with the Ktinneth decompo- 
sition 

H}(X x Y)=H?(X)  x H~(Y) x Ht(YO | Hi(Y).  

If we reinterpret the mixed terms in these decompositions in terms of the 
abelian varieties A =Alb(X) and B=Pic (Y)  by means of the standard 
canonical isomorphisms 

DCa(X, Y),.~ Homk(A, B) 
and 

Hi(X) | H~(Y) (1) ~ Hom(V~(A), V~(B)), 

then we see by our main theorem that the map 

(10) Qz | DCk(X, Y) -* ['H~(A') | HI(Y) (1)] ~ 

is bijective and this proves Theorem 3. 

Theorem 4. Suppose X is a product of curves and abelian varieties. 
Then C(X) is true, and the rank of NSk(X) is equal to the order of the 
pole of the zeta function of X at the point s = 1. 

For an X of this type the statement about the rank of NSk(X) is 
equivalent to C(X) being true, as explained in [10]. Since C(X) is trivially 
true for curves, we are reduced by Theorem 3 to proving that C(X) is 
true in case X = A  is an abelian variety. Consider the diagram 

ar 

Qt | NSk(A) ~ Q~ | DCk(A, A) 
(11) ,~ e~ '1 

HI(A) (1) 7 --+ H~(d) @ Hi(d) (1) 

where 7 is the map (9) attaching a cohomology class to a divisor class, 
where ~ = # * - P l - P 2 ,  the morphisms #,Pl,P2: A xA--}A being, 
respectively, the addition in A, and the projections on the first and second 
factors, and where fl = d  *, the morphism A : A ~ A  x A being the diagonal 



144 J. TATE: Endomorphisms of Abelian Varieties 

one. The d i ag ram is commuta t ive  in the  sense tha t  cry = y a  and f ly =y f l ,  
and  we have 

/~ e = ( #  A ) * -  (Pl  A ) * -  (p2 d)* = 2 " - -  1" - 1 " = 4 - -  1 -- 1 = 2 ,  

because  N S  and  H 2 are homogeneous  quadra t ic  functors  of A. F r o m  this 
i t  fol lows tha t  the left  side of d i ag ram (11) is a d i rec t  s u m m a n d  of the 
r ight  side; thus  the bijectivity of (10) for  X =  Y = A  implies  tha t  of (9) 
for  X = A .  

Corol lary .  I f  X is a surface which is an abelian variety or the product 
of two curves, then the component prime to p = c h a r ( k )  of the Brauer 
group of  X is finite, and the product of its order with the determinant of 
the intersection matrix of a basis for  NSk(X  ) can be computed from the 
zeta function of  X. 

This fol lows f rom Theorem 5.2 of [11] because cond i t ion  (iv) of tha t  
t heo rem is satisfied by  such an X in virtue of Theorem 4 above.  

R e f e r e n c e s  

[1] BotmnA~, N.: Algfbre, Ch. 8, w 4, No. 2. 
[2] DEtraiNs, M.: Die Typen der Multiplikatorenringe elliptischer Funktionen- 

kfrper. Abh. Hamburg 14, 197--272 (1941). 
[3] LANG, S. : Abelian varieties. New York: Interscience 1959. 
[4] MANIN, Y. : The theory of commutative formal groups over fields of finite charac- 

teristic. Russian math. surveys 18, No. 6, 1 -  81 (1963). 
[5] MUMFORD, D.: Geometric invariant theory. Ergebn. der Math., Bd. 34. Berlin- 

Heidelberg-New York: Springer 1965. 
[6] - -  On the equations defining abelian varieties. L Inventiones math. 1, 287-- 354 

(1966). 
[7] SEmi, J.-P. : Groupes de Lie 1-adiques attachfs aux courbes elliptiques. Colloque 

Internat. du C.N.R.S. No. 143 a Clermont-Ferrand, l~ditions du C.N.R.S., 
Paris 1966. 

[8] --  Courbes elliptiques et groupes formels, l'Annuaire du Collfge de France, 
1965/66. 

[9] SHAFARYEVITCH, I.R.: Algebraic Number Fields. Proceedings of the Internat. 
Congr. of Math. in Stockholm, 1962, p. 163--176. (A.M.S. Translations, 
Ser. 2, vol. 31, p. 25--39.) 

[10] "fATE, J.: Algebraic cycles and poles of zeta functions. Arithmetical algebraic 
geometry, p. 93-- 110. New York: Harper & Row 1965. 

[11] -- On the conjecture of Birch and Swinnerton-Dyer and a geometric analog. 
Seminaire Bourbaki, 1965/66, expos6 306. 

[12] WEIL, A.: Varift6s abfliennes et courbes algfbriques. Act. No. 1064. Paris: 
Hermann 1948. 

Institut des Hautes ~'tudes Scientifiques 
Harvard University 

(Received September 16, 1966) 


