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Abstract. Using original ideas from J.–B. Bost and S. David, we provide an explicit
comparison between the Theta height and the stable Faltings height of a principally polar-
ized abelian variety. We also give as an application an explicit upper bound on the number of
K–rational points of a curve of genus g ≥ 2 under a conjecture of S. Lang and J. Silverman.
We complete the study with a comparison between differential lattice structures.
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Hauteur Thêta et hauteur de Faltings.

Abstract. On propose dans cet article les détails d’une preuve de comparaison explicite
entre la hauteur Thêta et la hauteur de Faltings stable d’une variété abélienne principalle-
ment polarisée et définie sur un corps de nombres K. Cette preuve est basée sur les idées de
J.-B. Bost et S. David. On trouvera de plus le calcul d’une borne explicite sur le nombre
de points K-rationnels d’une courbe de genre g ≥ 2 en supposant une conjecture de S. Lang
et J. Silverman. Ce travail est complété par une comparaison entre plusieurs structures de
réseaux sur l’espace tangent en 0.

Mots-Clefs : Hauteurs, Variétés abéliennes, Points rationnels.
———

1. Introduction

Let (A,L) be a principally polarized abelian variety defined over a number field K. The
aim of the article is to compare the Theta height hΘ(A,L) of definition 2.6, and the (stable)
Faltings height hF (A) of definition 2.1. These two ways of defining the height of an abelian
variety are both of interest, and the fact that they can be precisely compared can be very
helpful. For instance, several conjectures are formulated with the Faltings height because
it does not depend on the projective embedding of A that you may choose, but one may fix
an ample and symmetric line bundle on A and study the Theta height associated when one
seeks more effectivity (see for example [DaPh02] or [Re00], and also [Re99]); let us stress that
these ways of defining the height of an abelian variety are very natural: the Theta height is a
height on the moduli space of principally polarized abelian variety and the Faltings height
is a height on the moduli space (stack) of abelian varieties (without polarization), but with
a metric with logarithmic singularities (see the definitions below and refer to [Mu66] for the
Theta height, [MB85b] and [FaCh90] for the Faltings height).

The ideas needed to explicitly compute the constants of comparison between these heights
were given by Bost and David in a letter to Masser and Wüstholz [BoDa]. Here is the
strategy: using the theory of Moret–Bailly–models we express the Néron–Tate height of
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a point P ∈ A(K) in terms of the Theta height of P , the Faltings height of A and some base
point contributions (see lemma 5.2). Then we take P = O and we estimate the base point
contributions via vector bundles inclusions and theta functions analysis. We give here the
arguments, the constants and several complements, concerning the Lang–Silverman con-
jecture for instance. We also complete this work by giving in section 6 an explicit comparison
between several differential lattice structures associated to A, see the end of this introduction.

One should underline that this explicit comparison gives also a direct proof of the fact that
the Faltings height is actually a height (i.e. verifies the Northcott property), see the remark
1.4 below for a lower bound. Arguments for proving that hF is a height can be found in
the original article [Fa83] and in [FaCh90]. See also the Theorem 1.1 page 115 of [MB85b]
(seminar [Sz85]); the idea is to compactify some moduli schemes and to compare the stable
Faltings height of an abelian variety to the projective height (with logarithmic singularities)
of the corresponding point in the moduli space. There is another proof given by Moret–
Bailly in Theorem 3.2 page 233 of [MB85a] using the “formule clef” 1.2 page 190. See also
the Theorem 2.1 given in [Bo96a] page 795–04, where the proof relies on some estimates of
the “rayon d’injectivité”.

The author thanks J.–B. Bost and S. David for sharing their ideas, for their support and
helpful comments, A. Chambert-Loir and G. Rémond for their interest.

We use the notations Sg for the Siegel space and Fg for the fondamental domain, both
defined in §2.1. We add a Theta structure of level r (see §2.3), where r > 0 is an even integer.
With these notations, we get the following theorem.

Theorem 1.1. Let A be an abelian variety of dimension g, defined over Q, equipped with a
principal polarization defined by a symmetric ample line bundle L on A. Let K be a number
field such that A and L may be defined over K. For any embedding σ : K ↪→ C, let τσ ∈ Fg
such that there exists an isomorphism between principally polarized complex abelian varieties
Aσ(C) ' Cg/(Zg + τσZg). Then, the following inequalities hold :

m(r, g) ≤ hΘ(A,L)− 1
2
hF (A)− 1

4[K : Q]

∑
σ:K↪→C

log(det(Im τσ)) ≤M(r, g) .

Above, m(r, g) and M(r, g) denote constants depending only on the level r and the dimension
g. More precisely, if we take :

m(r, g) = g

[
1
4

log(4π)− 1
2
r2g log(r)

]
, M(r, g) =

g

4
log(4π) + g log(r) +

g

2
log
(

2 +
2

3
1
4

2
g3

4

)
the result holds.

Remark 1.2. According to the so called Matrix Lemma of Masser (see [Ma97] page 115 or
[MaWu93] page 436) there exists a constant C(g) such that under the hypothesis of the above
theorem :

1
[K : Q]

∑
σ:K↪→C

∣∣∣ log
(

det(Im τσ)
)∣∣∣ ≤ C(g) log

(
max{hΘ(A,L), 1}+ 2

)
.

Using the article [DaPh02] page 697 and a few calculations it is possible to prove such a bound
with the explicit constant C(g) = 8g

π (1 + 2g2 log(4g)). See also [Gra01] lemma 2.12 page 99
for a similar statement involving the Faltings height.

Thus, we shall establish in § 5.2.1 the following versions of Faltings’ estimate (see [Fa83]) :
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Corollary 1.3. For every integer g ≥ 1 and even integer r ≥ 2, there exists effectively
computable constants C1(g, r), C2(g, r), C3(g, r) depending only on g and r such that the
following holds. Let A be an abelian variety of dimension g defined over Q, equipped with
a principal polarisation defined by some symmetric ample line bundle L on A. Let hΘ =
max{hΘ(A,L), 1} and hF = max{hF (A), 1}. Then, one has :

(1)
∣∣∣hΘ(A,L)− 1

2
hF (A)

∣∣∣ ≤ C1(g, r) log
(
hΘ + 2

)
,

(2)
∣∣∣hΘ −

1
2
hF

∣∣∣ ≤ C2(g, r) log
(

min
{
hΘ, hF

}
+ 2
)
,

(3)
∣∣∣hΘ(A,L)− 1

2
h′F (A)

∣∣∣ ≤ C3(g, r),

where h′F (A) is a modified Faltings height of A, defined in 2.2. More precisely, the above
relations hold with :

C1(g, r) = C3(g, r) = 6r2g log(r2g) and C2(g, r) = 1000r2g(log(r2g))5.

Remark 1.4. For an abelian variety A of dimension g and level structure r, the inequality of
Theorem 1.1 and the remark 1.2 give after a short calculation :

hF (A) ≥ −C(g) logC(g) − M(r, g) ,

whereM(r, g) = g
4 log(4π)+g log(r)+ g

2 log
(

2+ 2

3
1
4

2
g3

4

)
and C(g) = 8g

π

(
1 + 2g2 log(4g)

)
. One

could expect a better constant, see Bost in [Bo96c] page 6 who gives: hF (A) ≥ −g log(2π)/2.

Remark 1.5. The inequalities (1) and (3) both hold if one replaces hΘ(A,L), hF (A) and
h′F (A) respectively by hΘ = max{hΘ(A,L), 1}, hF = max{hF (A), 1} and h′F = max{h′F (A), 1}
in the left hand sides.

Remark 1.6. One can notice that the bounds are sharper for small r, so in practice one will
often take r = 2 or r = 4.

We now give the example of a difficult conjecture by Lang and Silverman stated with the
Faltings height. It was originally a question by Lang concerning elliptic curves, and was
generalised by Silverman afterwards. As a matter of fact, if we combine the inequality of
this conjecture with the work of David and Philippon [DaPh02] and the work of Rémond
[Re00], we get a new explicit bound on the number of rational points on curves of genus g ≥ 2,
provided that we can explicitely compare the Faltings height that appears in the conjecture
and the Theta height that appears in the calculations of [DaPh02] and [Re00]. To be concise,
one can say that an explicit Lang–Silverman inequality would give an explicit upper bound
on the number of rational points on a curve of genus g ≥ 2 independant of the height of the
jacobian of the curve (but still depending on the Mordell–Weil rank of the jacobian).

First recall the original conjecture of Silverman ([Si84] page 396) :

Conjecture 1.7. (Lang–Silverman version 1) Let g ≥ 1 be an integer. For any number
field K, there exists a positive constante c(K, g) such that for any abelian variety A/K of
dimension g, for any ample and symmetric line bundle L on A and for any point P ∈ A(K)
such that Z·P is Zariski–dense, one has :

ĥA,L(P ) ≥ c(K, g) max
{
hF (A/K), 1

}
,
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where ĥA,L(.) is the Néron–Tate height associated to the line bundle L and hF (A/K) is the
(relative) Faltings height of the abelian variety A/K.

One could read [Pa09] for further remarks. Let us give a slightly different version of this
conjecture. The definition of the modified Faltings height is given in 2.2 :

Conjecture 1.8. (Lang–Silverman version 2) Let g ≥ 1 be an integer. For any number
field K of degree d, there exists two positive constants c1 = c1(d, g) and c2 = c2(d, g) such that
for any abelian variety A/K of dimension g and any ample symmetric line bundle L on A,
for any point P ∈ A(K), one has :

• either there exists a sub-Abelian variety B ⊂ A, B 6= A, of degree deg(B) ≤ c2 and
such that the point P is of order bounded by c2 modulo B,
• or one has Z·P is Zariski–dense and :

ĥA,L(P ) ≥ c1 max
{
h′F (A), 1

}
,

where ĥA,L(.) is the Néron–Tate height associated to the line bundle L and h′F (A)
is the (stable) modified Faltings height of the abelian variety A.

This second version of the conjecture is suggested by different results found in [Da93] and
[Pa08]. Note that one could also state it with a relative modified Faltings height (that would
be a stronger statement). Now this second version and the point (3) in Corollary 1.3 give,
if we use them in the work of David–Philippon [DaPh02] and Rémond [Re00] (see infra
§5.2.1 for some details) :

Proposition 1.9. Assume conjecture 1.8. Then for any number field K, for any curve C/K
of genus g ≥ 2 with jacobian J = Jac(C), one can explicitely bound the number of K–rational
points on C in the way :

Card(C(k)) ≤
(
c̆(d, g)

)1+rk(J/K)
,

where one can take c̆(d, g) = max
{

2c2 , 1 + (124 + g)212
42g+3g

(
g4 + 22g+2g + 1

c1

)}
, with c1

and c2 given in conjecture 1.8.

One can also read [DeDi97] for another way of deriving this type of bounds. Finally, this
work also includes in section 6 a comparison between different lattice structures on the tangent
space at 0 of an abelian variety. Let A/K be an abelian variety, L an ample symmetric
line bundle associated to a principal polarisation. Let r be an even positive integer. By
enlarging K, one can assume that the r2–torsion points are all rational over K. We let
π : A → S = Spec(OK) be a semi–stable model of A, and ε its neutral section. We define
the Néron lattice by N = ε∗Ω1

A/S . The big Shimura lattice is defined as follows: let
θ ∈ Γ(A,L)\{0} and Γ, ϕx, etc. be as in paragraph 2.3. Let θx = ϕx(0). The family (θx)x∈Γ

is a base over K of Γ(A,L⊗r
2
). Then the big Shimura lattice is:

Sh =
∑

(x,x′)∈Γ2

θx(0)6=0

OKd
(θx′
θx

)
(0) .

The comparison between these two structures is of interest in transcendence theory, see for
example [Sh77], [Da91] page 134 or [MaWu93] from page 120. We use δ(., .) for the distance
on lattices defined in 6.2.1. Then we find in section 6, among other results, the following
theorem:
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Theorem 1.10. Let g ≥ 1 and r > 0 an even integer. There exists a constant c(g, r) > 0
such that for any triple (A,L, r) with A of dimension g, for any associated MB1 number field
K, one has:

δ(N ,Sh) ≤
(

1 + 2c(g, r)
)

min{hΘ, hF } ,

and one can take c(g, r) = 4 + 8C2 + g log(π−gg!eπr
2
g4) + 4r2g, where C2 is given in Corol-

lary 1.3.

2. Definitions

2.1. Basic Notations. Let us first introduce the following notations. If A is an abelian
variety defined over a number field K, or, more generally an abelian scheme over a base
scheme S, we shall denote for any n in Z by [n] :

[n] : A −→ A ,

the group scheme morphism defined by the multiplication by n, and when n > 0, by An its
kernel; for any x ∈ A(K) (respectively A(S)), we shall denote by tx the morphism ofK–variety
(respectively of scheme) :

tx : A −→ A ,

defined by the translation by x.
Since we shall also make an extensive use of the classical theory of theta functions (es-

sentially to evaluate various analytic invariants), we also recall a few basic definitions here
involving the standard Riemann theta function. Let g be an integer g ≥ 1. We shall denote
by Sg the Siegel upper half space, i. e. the space of g × g symmetric matrices with entries
in C, whose imaginary part are positive definite. Let z = x+ iy ∈ Cg and τ = X + iY ∈ Sg

(in all this paper, it will be implicitly assumed that such an expansion implies that x, y, X,
Y all have real entries). Also, unless otherwise specified, it will be assumed that vectors in Cg

have column entries. The classical Riemann theta function is then :

θ(τ, z) =
∑
n∈Zg

exp
(
iπtn.τ.n+ 2iπtn.z

)
.

Form1,m2 ∈ Rg we shall also introduce afterRiemann, Jacobi, Igusa, the theta functions
with characteristics defined by :

θ(m1,m2)(τ, z) =
∑
n∈Zg

exp
(
iπt(n+m1).τ.(n+m1) + 2iπt(n+m1).(z +m2)

)
.

These functions will be equipped with the following norm (made invariant with respect to
the action of the symplectic group) :

‖θ‖(τ, z) = det(Y )
1
4 exp

(
−πty.Y −1.y

)
|θ(τ, z)| ,

and :
‖θ(m1,m2)‖(τ, 0) = det(Y )

1
4

∣∣θ(m1,m2)(τ, 0)
∣∣ .

The above norm can similarly be defined for any z ∈ Cg, but we shall only need it for z = 0.
It should be also noted that θ(0,0)(τ, z) = θ(τ, z).

Let us denote by Fg the usual fundamental domain of Sg (confer [Ig72], V. 4.). Recall that
it is characterized by the following properties :

1See definition 3.2.
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S. 1. If τ ∈ Fg, then for every γ ∈ Sp2g(Z), one has det(Im(γ.τ)) ≤ det(Im τ), where if

γ =
(
α β
λ µ

)
, γ.τ = (ατ + β)(λτ + µ)−1.

S. 2. If τ = (τi,j)1≤i,j≤g ∈ Fg, then :

∀(i, j) ∈ {1, . . . , g}2 , |Re(τi,j)| ≤
1
2
.

S. 3. If τ ∈ Fg,
• ∀k ∈ {1, . . . , g} and ∀ξ ∈ Zg, (ξk, . . . , ξg) = 1, one has tξ. Im(τ).ξ ≥ Im(τk,k).
• ∀k ∈ {1, . . . , g − 1}, one has Im(τk,k+1) ≥ 0.

Finally, we shall also make use of the following notations for projective spaces. Assume
that E is a vector bundle over some noetherian scheme S, we shall denote by P(E) the scheme
Proj(Sym(Ě)) (where2 Sym(Ě) =

∑
d>0 S

d(Ě) is the symmetric algebra of Ě). This is nothing
but P(E), where E is the sheaf of sections of the dual bundle of E, in Grothendieck’s
notations (see e. g. [Ha77], page 162). The canonical quotient line bundle will be denoted by
OE(1).

2.2. The FALTINGS height. Let A be an abelian variety defined over Q, of dimension g
(g ≥ 1), and K a number field over which A is rational and semi–stable. Put S = Spec(OK),
where OK is the ring of integers of K. Let π : A −→ S be a semi–stable model of A over S.
We shall denote by ε the zero section of π, so ε : S −→ A and by ωA/S the sheaf of maximal
exterior powers of the sheaf of relative differentials :

ωA/S := ε?Ωg
A/S ' π?Ω

g
A/S .

For any embedding σ of K in C, the corresponding line bundle :

ωA/S,σ = ωA/S ⊗OK ,σ C ' H0(Aσ(C),Ωg
Aσ(C))

can be equipped with a natural L2–metric ‖.‖σ defined by :

‖α‖2σ =
ig

2

(2π)g

∫
Aσ(C)

α ∧ α

(note that we follow here the normalization chosen by Deligne, in [De85] or [Bo96a] page
795–04).

The OK–module of rank one ωA/S , together with the hermitian norms ‖.‖σ at infinity
defines an hermitian line bundle ωA/S over S, which has a well defined Arakelov degree
d̂eg(ωA/S). Recall that for any hermitian line bundle E over S, the Arakelov degree of E is
defined as :

d̂eg(E) = log Card (E/OKs)−
∑

σ : K↪→C
log ‖s‖σ ,

where s is any non zero section of E (which does not depend on the choice of s in view of the
product formula). More generally, when E is an hermitian vector bundle over S, one defines
its Arakelov degree as :

d̂eg(E) = d̂eg(det(E))
(where the metrics on det(E) at the archimedean places are those induced by the metrics of
E).

2The symbol Ě stands for the dual of E.
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We now give the definition of the Faltings height that one finds in [Fa83] page 354.

Definition 2.1. The normalized stable Faltings height of A is defined as :

hF (A) :=
1

[K : Q]
d̂eg(ωA/S) .

This height only depends on the Q–isomorphism class of A. It is also called the differential
height in [MB85a]. To see that it is really a height, see for instance [Fa83] Satz 1, page 356
and 357. We will also define a modified Faltings height for polarized abelian varieties, very
useful in some applications.

Definition 2.2. Let A be an abelian variety. If A is principally polarized, then for every
embedding σ : K ↪→ C, choose τσ ∈ Fg associated with Aσ(C). The normalized stable
modified Faltings height of A is defined as follows :

h′F (A) := hF (A) +
1

2[K : Q]

∑
σ:K↪→C

log(det(Im τσ)) .

If A is equipped with an ample symmetric line bundle L, choose an isogeny ofminimal degree
ϕ : A → A0 where A0 is principally polarized. For any σ : K ↪→ C let τσ,A0 ∈ Fg denote the
period matrix associated with A0,σ(C). Then take :

h′F (A) := hF (A) +
1

2[K : Q]

∑
σ:K↪→C

log(det(Im τσ,A0)) +
1
2

log(degϕ) .

Remark 2.3. In the situation of isogeneous abelian varieties ϕ : A→ A0, the corollary 2.1.4
of Raynaud [Ra85] gives hF (A0) ≤ hF (A) + 1

2 log(degϕ), see also [Fa83], lemma 5 page 358.
Hence h′F (A0) ≤ h′F (A).

2.3. Theta structures and Theta height.

2.3.1. Isomorphisms of line bundles. Let us assume we are given the following data.
• Let K be any field of characteristic zero;
• Let A be an abelian variety of dimension g defined over K;
• Let L be a symmetric ample line bundle on A, rigidified at the origin, which defines a
principal polarisation on A;
• Let r > 0 be an even integer.

We shall furthermore assume (by enlarging the base field K if needed) that all the torsion
points of order r2 of A are rational over K. For any positive integer n, let us define An(K)
the set of K–rational torsion points of order n.

Recall that there is a unique isomorphism j (since L is symmetric, see e. g. [BiLa04],
Corollary 3. 6, page 34) :

j : [r]?L→∼ L⊗r2 ,
compatible with the rigidification of L. This implies that for any x ∈ Ar(K), there is a
canonical isomorphism :

ix : t?xL
⊗r2 →∼ L⊗r2 .

Indeed, we have :

t?xL
⊗r2 j−1

' t?x([r]?L) ' ([r] ◦ tx)?L ' [r]?L
j
' L⊗r2 .
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These isomorphisms (ix)x∈Ar(K) are compatible, namely, for any (x, y) ∈ Ar(K)2, the
composite map :

(1) t?x+yL
⊗r2 ' t?x

(
t?yL
⊗r2
) t?xiy' t?xL

⊗r2 ix' L⊗r2

coincides with ix+y.
As a matter of fact, for any x ∈ Ar2(K), there is still an isomorphism :

ix : t?xL
⊗r2 →∼ L⊗r2 ,

see for example [BiLa04], Lemma 4. 7 (c), page 38.
Moreover, these ix with x ∈ Ar2(K) may be chosen in such a way that for any (x, y) ∈

Ar2(K)2, the map (1) coincides with ix+y up to a multiplication by some r2–th roots of unity.
Any such choice of the ix’s will be called a good choice. If (i′x)x∈Ar2 (K) is another good choice,
there exists a system (λx)x∈Ar2 (K) of r4–th roots of unity in K (the r4–th roots of unity are
K–rational by the Weil–pairing properties, see for example Corollary 8.1.1 page 98 of [Si92])
such that for any x ∈ Ar2(K), we have i′x = λxix.

All these remarks easily follow from the theorem of the cube and are immediate consequences
of Mumford’s theory of theta structures (note that any theta structure on L⊗r2 induces a
good choice of the ix’s). See for instance [Mu66] and [Mu67].

2.3.2. Bases for Γ(A,L⊗r
2
). Let us suppose from now on that a good choice for the (ix) has

been made. For any x ∈ Ar2(K) let :

ϕx : Γ(A,L) −→ Γ(A,L⊗r
2
)

s 7−→ (ix ◦ t?x ◦ j ◦ [r]?)s .

It is an injective morphism from the K–line Γ(A,L) into the K–vector space Γ(A,L⊗r
2
) of

dimension r2g. We have the following lemma :

Lemma 2.4. For any x, x′ ∈ Ar2(K), such that y = x− x′ ∈ Ar(K) there exists a r4–th root
of unity µ = µy in K such that ϕx′ = µϕx.

Proof. One just need to notice that (i′x) := (ix′) is also a good choice, then apply the remarks
of §2.3.1. �

Let now Γ be any set of representatives in Ar2(K) of Ar2(K)/Ar(K). We have the following :

Proposition 2.5. The map :

ϕ : Γ(A,L)Γ −→ Γ(A,L⊗r
2
)

(sx)x∈Γ 7−→
∑
x∈Γ

ϕx(sx) ,

is an isomorphism of K–vector spaces.

Proof. This follows for instance from Mumford’s theory of theta structures (see [Mu66] or
[DaPh02]). Indeed, the image of ϕ is non zero and invariant under the irreducible projective
representation of the group K(L⊗r

2
) = Ar2(K).

Finally, any bijection Γ '
{

1, . . . , r2g
}
provides an isomorphism :

Γ(A,L)⊕r
2g ∼−→ Γ(A,L⊗r

2
) ,
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and therefore, an isomorphism :

(2) P(Γ(A,L⊗r
2
)) ' Pr

2g−1
K .

The various isomorphisms (2) obtained by this construction for various choices of the rigid-
ification of L at the origin, of the coordinate system (ix)x∈Ar2 (K), of Γ and of the bijection
Γ ' {1, . . . , r2g} coincide up to the action of an element of the finite group :

G = Sr2g C µr4(K) ⊂ GLr2g(K)

(note that above the S denotes the group of permutations and not Siegel’s upper half space).
See [BiLa04] page 168 and [DaPh02] page 654 for more details.

2.3.3. Theta embeddings. The line bundle L⊗r2 is very ample on A (since r2 ≥ 4 > 3).
Therefore, it defines an embedding :

A −→ P(Γ(A,L⊗r
2
)) ,

hence, by composition, with the map (2), an embedding of K–varieties :

(3) Θ: A −→ Pr
2g−1
K .

All these constructions are clearly compatible with extensions of the base field K (and in
particular with automorphisms of K).

Also observe that if L′ is another symmetric ample line bundle on A which defines the same
(principal) polarisation as L, then the Θ–embeddings of A into Pr

2g−1
K associated to L and L′

respectively coincide up to the projective action of the finite group G defined above. See for
example [DaPh02] page 654.

In fact the point Θ(0) ∈ Pr2g−1(K) determines up to some finite ambiguity theK–isomorphism
class of the abelian variety A equipped with the polarisation defined by L. Indeed, Θ(A) can
be defined by quadratic equations whose coefficients are functions of the projective coordinates
of Θ(0), which gives the Q–isomorphism class of A but one could have two abelian varieties
isomorphic over Q that are not isomorphic over K. See [Mu66] and [Mu67].

2.3.4. Theta height. For a projective point P ∈ PN (Q), we denote by h(P ) the l2-logarithmic
Weil height defined by means of the usual euclidean (or hermitian l2) norms at the infinite
places. It is the height with respect to O(1) equipped with the Fubini-Study metric, i.e.
(as in our situation N = r2g − 1) for P ∈ Pr2g−1(Q) it is given by the Arakelov degree
h(P ) = d̂egP ∗O(1)F.S. of the projective point P .

Definition 2.6. Let (A,L) be a principally polarized abelian variety defined over Q, of di-
mension g, with L ample and symmetric. Let Θ be the projective embedding described in (3).
The Theta height of A with respect to L is then defined as :

hΘ(A,L) := h(Θ(0)).

By the preceeding discussion, hΘ(A,L) depends only on the Q–isomorphism class of A
polarized by L, and defines a height on the set of such isomorphism classes; namely, it is
bounded below (by 0) and there is only a finite set, up to Q–isomorphism of pairs (A,L), with
bounded height which may be defined over a number field of bounded degree.

Consider then K = C. Let us fix an homology basis. Let us also fix any embedding of Q
in C. Then (see for example [BiLa04] page 213), there exists an element τ in Sg and a point
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z0 ∈ Cg such that A(C) and LC may be identified with the complex torus Cg/(Zg + τZg) and
O(Θτ + [z0]) respectively, where :

Θτ = {[z] ∈ Cg/(Zg + τZg), θ(τ, z) = 0}

is the divisor defined by the Riemann theta function.
The line bundle L⊗r2 is very ample and the classical Theta Nullwerte of the associated

embedding can be chosen as the r2g complex numbers :

θ(m1,m2)(τ, 0), m1,m2 ∈
{

0,
1
r
, . . . ,

r − 1
r

}g
.

Note that certain authors (for instance Mumford) rather consider the θ(m,0)(r2τ, 0) where
m ∈ 1

r2
Zg/Zg. We shall also make use of this latter coordinate system, but generally select

the former. They do not all vanish (see e. g. [Ig72], page 168), and their quotients all be-
long to Q since A is defined over Q (see e. g. [Ig72], page 170). Hence, they define some
point in Pr2g−1(Q). The normalized logarithmic Weil height of this point is by definition
the theta height hΘ(A,L) of the pair (A,L). Indeed, this height does not depend neither
on the choice of the embedding Q ↪→ C, nor on the choices of τ , z0. It only depends on
the Q–isomorphism class of the abelian variety (principally) polarized by L (see infra § 2.3).
The point Θ(0) is easily seen to have as projective coordinates the family of Theta Nullw-
erte

(
θ(m1,m2)(τ, 0)

)
(m1,m2)∈{0, 1

r
,..., r−1

r
}2g (use the description of the sections of O(Θτ ) and of

O(r2Θτ ) in terms of theta functions). This implies that when A is defined over Q, the theta
height is also given by the height of these Nullwerte.

3. Arakelov geometry of abelian varieties

In this section, we recall a few basic facts concerning the Arakelov geometry of abelian
varieties, due essentially to Moret–Bailly (see [MB85a] and [MB90]). They already appear
in the present form in [Bo96b], § 4. 2, to which we shall refer for proofs and references.

3.1. Definitions. Let K be a number field, OK its ring of integers, and π : A −→ Spec(OK)
a semi–stable group scheme, i. e. a smooth commutative group scheme of finite type and
separated over Spec(OK), such that the components of its fibers are extensions of abelian
varieties by tori (observe that these fibers are not necessarily connected). We shall say that
an hermitian line bundle L on A is cubist if there exists a cubist structure, in the sense of
[MB85a], I. 2. 4. 5, on the Gm–torsor over A defined by L which, with the notations of loc.
cit., is defined by a section τ of D3(L) of norm 1, when D3(L) is equipped with the hermitian
structure deduced from the one on L. In other words, if we denote by :

pi : L3 := L ×OK L ×OK L −→ L , i = 1, 2, 3

the projections on the three factors, by :

pI : A3 −→ A

the morphism which sends a geometric point (x1, x2, x3) to
∑

i∈I xi, for any non empty subset
I of {1, 2, 3}, and by OA3 the trivial hermitian line bundle (OA3 , ‖.‖) defined by ‖1‖ = 1,
then, an hermitian line bundle L over A is cubist if and only if there exists an isometric
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isomorphism :

(4) D3(L) :=
⊗

I⊂{1,2,3},I 6=∅

(
p?IL

)⊗(−1)#I ∼−→ OA3

of hermitian line bundles over A3 which satisfies suitable symmetry and cocycle conditions
(confer [MB85a], I. 2. 4. 5., (i) and (iii)). The relation (4) implies that, if ε : Spec(OK) −→ A
denotes the zero section,

ε?L ' OSpec(OK) ,

and also that if AK is an abelian variety, the (1, 1) form c1(L) is translation invariant on each
of the complex tori Aσ(C), for σ : K ↪→ C. Conversely, when A is an abelian scheme over OK ,
one easily checks that these last two properties characterize cubist hermitian line bundles over
A.

Let π : A −→ Spec(OK) be a semi–stable group scheme whose generic fiber AK is an
abelian variety. For any line bundleM on A, the direct image π?M is coherent (see [MB85a],
Lemma VI, I. 4. 2) and torsion free, hence locally free. If LK is a cubist hermitian line bundle
on A and if LK is ample on AK , then L is ample on A (see [Ra85], Theorem VIII. 2, and
[MB85a], Proposition VI. 2. 1) and c1(L) is strictly positive on A(C) (indeed, it is tranlation
invariant on each component of A(C) and cohomologous to a strictly positive (1, 1) form.
Therefore, we may define π?(L) as the hermitian vector bundle whose rank is :

ρ(LQ) :=
1
g!
c1(LQ)g

on Spec(OK) consisting of π?(L) endowed with the hermitian structure defined by the L2–
metric ‖.‖ associated to the metric on L and the normalized Haar measures on the complex
tori Aσ(C). In other words, for any section s ∈ π?L ⊗σ C ' H2(Aσ,Lσ), we let :

‖s‖2σ =
∫
Aσ(C)

‖s(x)‖2Ldµ(x) ,

where dµ denotes the normalized Haar measure on Aσ(C). It corresponds to the norm given
in 2.2, because the measure is normalized.

Definition 3.1. Let A be an abelian variety over Q, L an ample symmetric line bundle over
A and F a finite subset of A(Q). We define a MB–model of (A,L, F ) over a number field K
in Q as the data consisting of :

• a semi–stable group scheme π : A −→ Spec(OK),
• an isomorphism i : A→∼ AQ of abelian varieties over Q,
• a cubist hermitian line bundle L on A,
• an isomorphism ϕ as in 2.5.
• for any P ∈ F , a section εP : Spec(OK) −→ A of the map π, such that the attached
geometric point namely εP,Q ∈ A(Q) coincides with the point i(P ),

which satisfy the following condition : there exists a subscheme K of A, flat and finite over
Spec(OK), such that i−1(KQ) coincides with the Mumford group K(L⊗2), namely the finite
algebraic subgroup of A whose rational points x over Q are characterized by the existence of
an isomorphism of line bundles on A :

t?xL
⊗2 ' L⊗2 .
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Definition 3.2. Given a triple (A,L, r) with A an abelian variety over Q and L a symmetric
ample line bundle, r > 0 an even integer, we say that a number field K is MB if there exists
a MB–model of the type (π : A −→ Spec(OK), i,L, ϕ, (εP )P∈Ar2 ) rational over K.

Remark 3.3. One can find MB number fields using for example the semi–stable reduction
theorem (confer Moret–Bailly in [MB85a] Theorem 3.5 page 58).

3.2. Properties of MB–models. The main properties of MB–models we shall use in the
proof of Theorem 1.1 are essentially due to Moret–Bailly [MB85a] and [MB90]. See also
Breen [Br80] and Mumford [Mu66]. They may be summarized as follows :

Theorem 3.4. Let A be an abelian variety of dimension g over Q, L a symmetric ample line
bundle on A, and F a finite subset of A(Q). We have the following properties :

(i) Existence. For any number field K0, there exist a number field K containing K0 and
a MB–model (π : A −→ Spec(OK), i,L, ϕ, (εP )P∈F ) for the data (A,L, F ).

(ii) Néron–Tate heights. For any MB–model as in (i) and for any P ∈ F , the nor-
malized height [K : Q]−1d̂eg(ε?PL) coincides with the value at P of the normalized
logarithmic Néron–Tate height attached to the line bundle L and denoted ĥL(P ).

(iii) Independence of MB–models. For any two MB–models

(π : A −→ Spec(OK), i,L, ϕ, (εP )P∈F )

and
(π′ : A −→ Spec(OK), i′,L′, ϕ′, (ε′P )P∈F )

of (A,L, F ) over a number field K, the canonical isomorphisms defined by i, ϕ, i′ and
ϕ′ :

(π?L)Q ' H0(A,L) ' (π′?L)′Q
and

(ε?PL)Q ' L|P ' (ε′P
?L′)Q (∀P ∈ F )

extend to isometric isomorphisms of hermitian line bundles over the base Spec(OK) :

π?(L) ' π′?(L′)
and

εP
?(L) ' ε′P

?(L′) .
(iv) Compatibility with extensions of scalars. Let

(π : A −→ Spec(OK), i,L, ϕ, (εP )P∈F )

be a MB–model over some number field K, and let K ′ be some other number field such
that K ⊂ K ′ ⊂ Q. From this model, through extension of scalars from OK to OK′ , we
get a semi–stable group scheme :

π̃ : Ã := A×OK OK′ −→ Spec(OK′) ,

an hermitian line bundle L̃ on Ã (take the pull–back of L by the first projection A×OK
OK′ −→ A), and sections :

ε̃P := εP ⊗OK OK′ : Spec(OK′) −→ Ã ,

and the isomorphisms i and ϕ determine isomorphisms :

ĩ : A→∼ ÃQ and ϕ̃ : L→∼ ĩ?LQ .
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The 5–tuple (π̃ : Ã −→ Spec(OK′), ĩ, L̃, ϕ̃, (ε̃P )P∈F ) is a MB–model of (A,L, F )
over K ′. Moreover, if j : Spec(OK′) −→ Spec(OK) denotes the map defined by the
inclusion OK ↪→ OK′ , then the canonical isomorphism :

j?π?L −→ π̃?L̃

defines an isometric isomorphism of hermitian vector bundles over Spec(OK′) :

j?π?L −→ π̃?L̃ .

(v) Arakelov slope of π?L. For any MB–model as in (i) one has π?L semi–stable and :

d̂egπ?L
[K : Q]ρ(L)

= −1
2
hF (A) +

1
4

log
(
ρ(L)
(2π)g

)
.

(vi) Base points. For any MB–model as in (i), and any n ∈ N?, let A[n] be the smallest
open subgroup scheme of A containing K(L⊗nQ ). If n is even and if the closure of
K(L⊗nQ ) in A is finite over Spec(OK), then the global sections H0(A,L⊗n) generate

L⊗n over A[n].

Proof. For details or references concerning the proof of (i)–(v) see [Bo96b], § 4. 3. 2. Assertion
(vi) follows from [MB85a], VI. 3.4 and VI. 2. 2. �

Remark 3.5. One can observe that if (π : A −→ Spec(OK), i,L, ϕ, (εP )P∈F ) is aMB–model,
then (π : A −→ Spec(OK), i,L⊗r

2

, ϕ, (εP )P∈F ) is also a MB–model.

4. Comparisons of heights

4.1. Intrinsic heights and projective heights of integral points. Let K be a number field,
π : X −→ S := Spec(OK) a flat quasi–projective integral scheme such that XK is smooth, and
L an hermitian line bundle on X .

For any section P of π, we let as usual :

hL(P ) :=
1

[K : Q]
d̂egP ?L .

Let F be some hermitian vector bundle on S such that F ⊂ π?L and such that LK is
generated over XK by its global sections in FK ⊂ H0(XK ,LK). The subscheme BF of base
points of the linear system F of sections of L is defined as the closed subscheme of X whose
ideal sheaf IBF is such that the image of the canonical map :

π?F −→ L

is IBF .L.
As BF does not meet the generic fiber XK , for any section P of π, the subscheme P ?BF of

Spec(OK) is a divisor. We shall denote it :

(5) P ?BF =
∑

pprime
ofOK ,
p -∞

βp(L,F , P )p .
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The βp(L,F , P ) are non negative integers; almost all of them vanish. They have archimedian
counterparts, defined as follows; for any embedding σ : K ↪→ C, we let :

(6) βσ(L,F , P ) := −1
2

log

(
n∑
i=1

‖ui‖2Lσ(Pσ)

)
,

where (ui)1≤i≤n is any orthonormal basis of Fσ, a subspace of H0(Xσ,Lσ).
We shall denote by hF̌ the height on P(F̌K) attached to the hermitian line bundle OF̌ (1)

on the integral model P(F̌) of P(F̌K). More precisely, OF̌ (1) is OF̌ (1) equipped with the
metric defined by the metric on F and the canonical epimorphism π?P(F̌)

F −→ OF̌ (1). Let

ν : X̃ −→ X be the blowing up of BF , and let E := ν?(BF ). It is an effective vertical Cartier
divisor on the integral scheme X̃ . Let us consider the map iK : X̃K −→ P(F)K .

Proposition 4.1. For any section P of π : X −→ S, the following equality holds :

hL(P ) = hF (iK(PK)) +
1

[K : Q]

∑
p-∞

βp(L,F , P ) log(Np) +
∑

σ : K↪→C
βσ(L,F , P )

 .

Proof. The map iK : X̃K −→ P(F)K extends uniquely to a morphism i : X̃ −→ P(F), by the
very definition of a blowing up. Moreover, the canonical isomorphism of line bundles over
XK :

LK ' i?KOF̌ (1)
extends to an isometric isomorphism of hermitian line bundles over X :

(7) ν?L ' i?OF̌ (1)⊗ (O(E), ‖.‖)
if ‖.‖ denotes the hermitian metric on O(E) defined by :

‖u‖2σ =
n∑
i=1

‖ui‖2L,σ

on Xσ, for any orthonormal basis (ui)1≤i≤n of Fσ (confer [Bo96b], 2. 4 and 2. 5). Let P̃ : S −→
X̃ the section of π̃ := π ◦ ν : X̃ −→ S which lifts P : S −→ X (it exists by the properness of
the map ν : X̃ −→ X ). We have :

(8) [K : Q]hL(P ) = d̂egP ?L = d̂egP̃ ?ν?L,
and

(9) [K : Q]hF̌ (PK) = d̂eg(i ◦ P̃ )?OF̌K (1) = d̂egP̃ ?i?OF̌K (1)

(this follows from the definitions of hL and hF̌ ).
On the other hand, the arithmetic line bundle P̃ ?(O(E), ‖.‖) on S is defined by the arith-

metic cycle (
∑

p-∞ βp(L,F , P )p,
∑

σ|∞ βσ(L,F , P )‖.‖σ). Indeed, the multiplicity βp(L, F , P )

defined as the length at p of P ?BK , coincides with the length at p of P̃ ?E. This implies :

(10) d̂egP̃ ?(O(E), ‖.‖) =
∑
p-∞

βp(L,F , P ) log(Np) +
∑
σ|∞

βσ(L,F , P )

Together with relation (10), the relations (7), (8) and (9) imply the assertion of Proposi-
tion 4.1, which is thus proved. �
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We shall also need bounds on the numbers βp(L,F , P ); the following proposition is useful
do derive them :

Proposition 4.2. Let F ′ be another vector bundle over S such that :

F ⊂ F ′ ⊂ π?L ,

and let P be any section of π. Then, for any finite prime p, we have :

(11) 0 ≤ βp(L,F ′, P ) ≤ βp(L,F , P ).

Moreover, if we further assume that F ′K = FK , then we have :

(12)
∑
p-∞

mp(F ,L, P ) log(Np)−
∑
p-∞

mp(F ′,L, P ) log(Np) ≤ deg(F ′/F),

where deg(F ′/F) := log(#F ′/F).

Proof. If F ⊂ F ′, then, obviously, BF ′ ⊂ BF . This implies the second inequality of (11). The
first comes from the fact that the βp’s are lengths.

Let us now prove (12) when there exists a finite ideal p0 of OK such that F ′/F ' Fp0 .
Then, we have :

(13) BF ′ ∩ π−1(S − |p0|) = BF ∩ π−1(S − |p0|),

hence, for every prime p 6= p0,

mp(L,F , P ) = mp(L,F ′, P ) ,

and the relation (12) amounts to the bound :

βp0(L,F , P ) ≤ βp0(L,F ′, P ) + 1 .

Indeed, we are going to show the following inclusion of ideal sheaves :

(14) IBF′ .IXp0
⊂ IBF ,

where Xp0 denotes the scheme theoretic fiber of p0 in X (i. e. a vertical Cartier divisor
on X ). Let s ∈ F ′ whose class in F ′/F ' Pp0 does not vanish, and let σ ∈ H0(X ,L) the
corresponding global section of L on X . Choose α ∈ p0\p2

0. According to the definition of
both BF and BF ′ , we have the following equality of subsheaves of L :

IBFL+OXσ = IBF′L .

Moreover, αs ∈ F , therefore, ασ is a section of IBF .L and :

(15) αIBF′L ⊂ IBFL.

This proves that the inclusion (14) holds in a neighbourhood of Xp0 , hence on X itself by the
relation (13).

The general case of the inequality (12) follows from the special case we have just proven,
by considering a maximal strictly increasing chain (Fi)0≤i≤n of submodules :

F = F0 ( F1 ( · · · ( Fn = F ′ ,

and applying the inequality (12) to F = Fi−1, F ′ = Fi, for i varying between 1 and n, and
adding the inequalities thus obtained. Such a chain exists by the Jordan–Hölder theorem
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applied to F ′/F , each quotient Fi/Fi−1 is isomorphic to Fpi for some prime pi of OK by
maximality of the chain, and finally, one has just to remark that :

n∑
i=1

log(Npi) = log(#F ′/F) .

Proposition 4.2 is thus completely established. �

5. Theta embeddings and Arakelov geometry

5.1. Height of points. As in § 3.2, consider an abelian variety A of dimension g defined over
Q and L a symmetric ample line bundle over A defining a principal polarisation of A, together
with a strictly positive even integer r.

According to Theorem 3.4, (i), there exists someMB number field K and someMB–model
(π : A −→ Spec(OK), i,L, ϕ, (εx)x∈Ar2 (Q)) of (A,L,Ar2(Q)) such that any point x ∈ Ar2(Q)
is rational over K, and extends to some section of π, which we will still denote by the same
letter x.

Let :
j : [r]?LK →∼ L⊗r

2

K

be the isomorphism of line bundle over AK defined in subsection 2.3.1 (since LK is cubist, it
is automatically rigidified), and let :

ix : t?xL⊗r
2

K →∼ L⊗r2K , x ∈ AK,r2(K)

be a good choice of isomorphisms, as in § 2.3.1. Then, we have :

Proposition 5.1. We have the following properties :
(i) The isomorphisms j and ix extend to isometric isomorphisms of hermitian line bundles,

which we will still denote by the same letters :

j : [r]?L →∼ L⊗r
2

,

and :
ix : t?xL

⊗r2 →∼ L⊗r
2

.

(ii) The maps ϕx and ϕ (see Proposition 2.5) extend to isometric maps of hermitian line
bundles :

ϕx : π?L −→ π?L
⊗r2

,

and :
ϕ = (ϕx)x∈Γ : (π?L)Γ −→ π?L

⊗r2

(where (π?L)Γ is the direct sum of r2g–copies of the hermitian line bundle π?L).

Proof. The existence of a cubist structure on L implies (copy the usual arguments) that j
extends as an hermitian isometric isomorphism between [r]?L ' L⊗r

2

and that there exist
isometric hermitian isomorphisms :

ĩx : t?xL
⊗r2 →∼ L⊗r

2

, x ∈ Ar2(OK) .

For any two points x and y in Ar2(OK), ĩx+y ◦ (ĩx ◦ t?x ◦ ĩy)−1 is an isometric hermitian

automorphism of L⊗r
2

, therefore, the multiplication by some root of unity. This implies
that each ĩx coincides with ix up to some root of unity (simply define λx ∈ K? by ix =
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λxĩx and observe that the map x 7−→ [λx] defines a morphism from the finite abelian group
Ar2(K) to the torsion free group K?/µ∞(K)). Therefore, ix extends to an isometric hermitian
isomorphism as claimed. This proves part (i).

Let us now prove part (ii). The fact that the ϕx’s and ϕ extend to maps of OK–modules
follows from the fact that j and ix extend to morphisms of schemes over A. The fact that
these extensions are isometric in turn implies that ϕx is isometric. Finally, ϕ is isometric
since, for any pair (x, x′) ∈ Γ2, x 6= x′, and any embedding σ : K ↪→ C, the images of
ϕx,σ and ϕx′,σ are orthogonal in π?L

⊗r2
σ ; this follows for instance (see [DaPh02] page 656)

from the orthogonality of the classical theta functions with characteristics θ(m1,m2)(τ, rz), for
(m1,m2) varying in {0, 1

r , . . . ,
r−1
r }

2. This completes the proof of part (ii) and thus of the
Proposition 5.1. �

Let now F := (π?L)Γ. By means of the map ϕ, F may be identified with a submodule of
π?L⊗r

2 . Any bijection :
Γ ' {1, . . . , r2g} ,

determines an isomorphism :
P(F̌) ' Pr

2g−1
OK .

Moreover, as OF̌ (1) ' π?π?L ⊗O(1), the usual Weil (logarithmic and absolute) height h
and hF verify, for any point P ∈ P(F̌)(Q) ' Pr2g−1(Q) :

h(P ) = hF (P )− 1
[K : Q]

d̂egπ?L .

Therefore, by Theorem 3.4, (v), we get :

(16) h(P ) = hF (P ) +
1
2
hF (A) +

g

4
log(2π).

Finally, if we apply Proposition 4.1 to the data (A,L⊗r
2

,F), in place of (X ,L,F), and if we
use (16) and Theorem 3.4, part (ii), and if we observe that the morphism iK : AK −→ P(FK)
coincide with the theta embedding Θ: AK −→ Pr

2g−1
K of subsection 2.3.3, we get :

Lemma 5.2. Let (A,L) be a principally polarized abelian variety over a number field K,
of dimension g and level r, with L symmetric and ample. For any section P of π : A −→
Spec(OK), we have :

ĥL(P ) = h(Θ(PK))− 1
2
hF (A)− g

4
log(2π)

+
1

[K : Q]

∑
p-∞

βp(L⊗r2 ,F , P ) log(Np) +
∑

σ : k↪→C
βσ(L⊗r

2

,F , P )

 .
,

where βp and βσ are defined by the equations (5) and (6).

5.2. Bounds for the contribution of the base points. Thanks to Theorem 3.4 and to
Proposition 4.2, it is easy to bound the contribution of the base points over finite places. More
precisely, we get the :

Proposition 5.3. For any P ∈ A(OK), the following inequalities hold :
(i) for any prime ideal p ( 6= 0) of OK one has :

0 ≤ βp(L⊗r2 , π?L⊗r
2
, P ) ≤ βp(L⊗r2 ,F , P ) ;
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(ii) the difference of multiplicities is also bounded as follows :

1
[K : Q]

∑
p-∞

(
βp(L⊗r2 ,F , P )− βp(L⊗r2 , π?L⊗r

2
, P )

)
log(Np) ≤ g

2
r2g log(r) ;

(iii) Moreover, for any p, if the component (over Fp) of AFp containing PFp meets3 the
closure in A of AK,r2(K), then :

(17) βp(L⊗r2 , π?L⊗r
2
, P ) = 0.

In particular, the relation (17) holds if P is the zero section ε of A.

Proof. the point (i) follows from relation (11), and the point (ii) from the relation (12) and
from Theorem 3.4 part (v), which shows that :

d̂eg
(
π?L⊗r

2
/F
)

= d̂egπ?L
⊗r2 − d̂egF = d̂egπ?L⊗r

2 − r2gd̂egπ?L

= r2g

(
1
4

log(ρ(L⊗r2))− 1
4

log(ρ(L))
)

= r2g 1
4

log(r2g)

Finally, equation (17) follows from Theorem 3.4, part (vi). Proposition 5.3 is thus proved. �

We now turn to the archimedean counterparts of the βp. They are easily expressed in terms
of the classical theta functions (also compare with [Bo96a], Appendix C). We summarize the
estimates we need in :

Lemma 5.4. Let (A,L) be a principally polarized abelian variety over a number field K,
of dimension g and level r, with L symmetric and ample. Let P be a point of A(OK) and
σ : K ↪→ C a complex embedding. Let τσ be a point in Sg (the Siegel space) such that :

(18) Aσ(C) ' Cg/(Zg + τσZg)

as principally polarized abelian varieties, and let z ∈ Cg be such that [z] ∈ Cg/(Zg + τσZg) is
the image of Pσ by the map (18). Then, we have :

(19) βσ(L⊗r
2

,F , P ) = −1
2

log

2
g
2

∑
e∈Zr(τσ)

‖θ‖2(τσ, rz + e)

 ,

where we denote by Zr(τσ) the set 1
r (Zg + τσZg)/(Zg + τσZg).

The right hand side of the equation (19) may be bounded by using the following estimates
which are also of independent interest :

Proposition 5.5. We use the notations Sg for the Siegel space of principally polarized
abelian varieties and Fg for the fondamental domain. We have the following inequalities :

(i) For any τ ∈ Sg,

max
e∈Zr(τ)

{‖θ‖2(τ, e)} ≥ (det(Im τ))
1
2 .

3i. e. if some element x of A(OK)r2 is such that xFp and PFp lie in the same component of AFp
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(ii) For any τ ∈ Fg, and any z ∈ Cg, we have :

‖θ‖2(τ, z) ≤ c(g) (det(Im τ))
1
2 ,

where c(g) denotes a constant which depends only on g. We can take for instance :

c(g) =
(

2 +
2

3
1
4

2
g3

4

)g
.

In particular, for any τ ∈ Fg, one has :
g

4
log(2) ≤ 1

2
log
(

2
g
2

∑
e∈Zr(τ)

‖θ‖2(τ, e)
)
− 1

4
log(det(Im τ)) ≤ 1

2
log c(g) +

g

4
log(2) + g log(r) .

Proof. The point (i) is equivalent to the assertion :

∀τ ∈ Sg, F (τ) = max
(m1,m1)∈{0, 1

2
}2g

{∣∣θ(m1,m2)(τ, 0)
∣∣} ≥ 1 .

This follows from the duplication formula which shows that F (τ) ≥ F (2τ), and from the
observation :

lim
n→∞

θ(2nτ, 0) = 1 ,

compare with [Da91], § 3. 3 to § 3. 5.
The point (ii) is Lemma 3. 4 of [Da91], with the explicit constant found in the work of

Graftieaux by combining equation (14) page 101 and equation (17) page 103 of [Gra01]. �

5.2.1. Proof of Theorem 1.1. To complete the proof of Theorem 1.1, it is now enough to apply
Lemma 5.2 and the results of the former section to the point P = ε, the zero section of
π : A −→ Spec(OK). In that way we get the inequalities with

M(r, g) =
g

4
log(4π) + g log(r) +

1
2

log c(g) ,

and :
m(r, g) =

g

4
log(4π)− g

2
r2g log(r) .

Applied to an arbitrary section P ∈ A(OK), the above estimates also give the following
comparison between the Weil height h(P ) and the Néron–Tate height ĥL(P ) of the point
P :

Theorem 5.6. Let (A,L) be a principally polarized abelian variety over a number field K, of
dimension g and level r, with L symmetric and ample. We denote by τσ the period matrix in
the fundamental domain Fg for the archimedian place σ. For any point P ∈ A(Q), we have :

ĥL(P ) ≥ h(Θ(P ))− 1
2
hF (A)− 1

4[K : Q]

∑
σ : K↪→C

log(det(Im τσ))− C(r, g) ,

where one can take C(r, g) = g
4 log(4π) + g log(r) + g

2 log
(

2 + 2
31/4 2g

3/4
)
.

It should be observed that any point P ∈ A(Q) is integral and extends to a suitable MB–
model; the machinery can then be used, since the degree of the number field on which the
MB–model is defined does not interfere in the estimates.

To obtain Corollary 1.3 it then suffices to apply Theorem 1.1 for part (1) and (3) (using Def-
inition 2.2). For part (2), it suffices to use part (1) with max{hΘ(A,L), 1} and max{hF (A), 1}
in the left hand side of the inequality, plus the following easy lemma :
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Lemma 5.7. Let a ≥ 1 and b ≥ 1 be real numbers. Suppose that there exists a number c ≥ 2
such that |a−b| ≤ c log(2+a) (we will refer to this inequality by (∗) along the proof). Then we
have |a− b| ≤ c̃ log(2 + min{a, b}), where one can choose c̃ = c log(6 + 2c log(2c)− 2c)/ log(3).

Proof. Let g(x) = c log(2 + x)− x/2. Then for all x ≥ 1 one has g(x) ≤ g(2c− 2). Thus :

c log(2 + a) ≤ a

2
+ c log(2c)− c+ 1 ,

hence using (∗) :

a ≤ b+ c log(2 + a) ≤ b+
a

2
+ c log(2c)− c+ 1 ,

then : a ≤ 2b+ 2c log(2c)− 2c+ 2. We get in (∗) :

|a− b| ≤ c log(2 + a) ≤ c log
(

4 + 2b+ 2c log(2c)− 2c
)
.

One can show the inequality, valid for all y ≥ 3 and d ≥ 0 :

log(2y + d) ≤ log(6 + d)
log(3)

log(y) .

One gets with y = 2 + b and d = 2c log(2c)− 2c :

|a− b| ≤ c log(6 + 2c log(2c)− 2c)
log(3)

log(2 + b) .

As log(6 + 2c log(2c)− 2c)/ log(3) ≥ 1, it gives the lemma.
�

Finally, to get a proof of Proposition 1.9, use Proposition 3.7 page 527 of Rémond [Re00]
and the explicit bounds of [DaPh02] of pages 662 and 665 to complete the estimate. A similar
computation has been done in [Pa08] pages 116–117 in the case of jacobians of genus 2 curves.

6. Comparison of differential lattices

We will study in the following several differential lattice structures associated to an abelian
variety.

6.1. Integral forms. We consider Lie(A)ˇ = Ω1
A,0. Given a triple (A,L, r) with A an abelian

variety, L a symmetric ample line bundle associated to a principal polarisation and r > 0 an
even integer, and given a MB field K for this triple (see definition 3.2), we will study the
following OK–integral forms of Ω1

A,0. We denote by “d” the differential operator, which we
normalize such that for any non–zero sections s1 and s2 we have s⊗2

2 d(s1/s2) integral over
OK . See for instance [Gra01] page 107.

(1) The Néron lattice N = ε∗Ω1
A/S .

(2) The big Shimura lattice, defined as follows : let θ ∈ Γ(A,L)\{0} and Γ, ϕx, etc. be as
in paragraph 2.3. Let θx = ϕx(0). The family (θx)x∈Γ is a base over K of Γ(A,L⊗r

2
).

Then the big Shimura lattice is :

Sh =
∑

(x,x′)∈Γ2

θx(0)6=0

OKd
(θx′
θx

)
(0) .
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(3) The small Shimura lattice : let x = (x0, ..., xg) ∈ Γg+1 such that θx0(0) 6= 0 (hence
θx0 is even) and such that the differentials

(
d(θxi/θx0)(0)

)
1≤i≤g

is a K–base of Ω1
A,0.

We let then :

Shx =
g∑
i=1

OKd
( θxi
θx0

)
(0) .

(4) Let K be aMB field for the triple (A,L, r) and (π : A → Spec(OK), i,L, ϕ, (εx)x∈Ar2 )
the associated model. We call “abstract Shimura differential” (see [Bo96a] page 795–
28) the morphism of OK–modules :

Σ : (π∗L⊗r
2
)⊗2 → ε∗Ω1

A/S .

Lemma 6.1. Let N and Sh be the lattices defined previously. Then :
(1) These lattices only depend on (A,L, r) and K.
(2) Let K be a MB field for (A,L, r) and let K ′/K be a finite extension. Then K ′ is also

MB for (A,L, r). Moreover, if N ′ and Sh′ are respectively the OK′–Néron lattice and
the OK′–Shimura lattice associated to (A,L, r), we have the canonical isomorphisms
N ′ ' N ⊗OK OK′ and Sh ' Sh⊗OK OK′.

Proof. Follows from the definition 3.2. The canonical isomorphism is deduced by the commu-
tativity of the following diagram :

N ′ ⊗OK′ K
′ N ⊗OK K

′

Ω1
A/K′(0) Ω1

A/K(0)⊗K K ′

-∼

?
*

?
*

-∼

�

6.2. Comparison of integral forms.

6.2.1. A distance between the lattices on a K–vector space. Let K be a number field and V a
K–vector space of dimension g. Let us consider the set :

R(V ) =
{
V ⊂ V

∣∣∣ V sub–OK–module free of finite type generating V over K
}
.

For all (V1,V2) ∈ R(V )2 we set :

δ(V1,V2) =
1

[K : Q]
log Card

(
(V1 + V2)/V1 ∩ V2

)
.

Proposition 6.2. The function δ is a distance on R(V ).

Proof. We have easily that for any V1 and V2 in R(V ), δ(V1,V2) = δ(V2,V1). Moreover, if
δ(V1,V2) = 0, then (V1 + V2)/V1 ∩ V2 = {0}, hence any element of V1 is in V2 and vice versa.
Let V1, V2 and V3 be in R(V ), and v1 ∈ V1, v3 ∈ V3. Pick any v2 ∈ V2, then the equalities of
the type v1 + v3 = v1 + v2 − v2 + v3 give the inclusion :(

(V1 + V3)/V1 ∩ V3

)
⊂
(

(V1 + V2)/V1 ∩ V2

)
+
(

(V2 + V3)/V2 ∩ V3

)
.

One just needs to bound from above the cardinality of the right hand side to get the triangular
inequality for δ, which is easy.

�
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Remark 6.3. Suppose V1 ⊂ V2. Then [K : Q]δ(V1,V2) = log Card(V2/V1) is just the index
of a sublattice.

If K ′/K is a finite extension, let V ′ = V ⊗KK ′ and let R(V ′) denote the OK′–lattices. We
get an injection :

i : R(V )→ R(V ′)
V 7→ V ⊗OK OK′ .

Proposition 6.4. Let δ′ be the distance on R(V ′) defined as above. Then :

∀(V1,V2) ∈ R(V )2, δ′(i(V1), i(V2)) = δ(V1,V2) .

Proof. One just needs to apply [K ′ : Q] = [K ′ : K][K : Q] in the definition of δ′. �

In this setting, we will now show the following statement :

Theorem 6.5. Let g ≥ 1 and r > 0 an even integer. There exists a constant c(g, r) > 0 such
that for any triple (A,L, r) with A of dimension g, for any associated MB number field K,
for any x ∈ Γ defining a small Shimura lattice, one has :

max
{
δ(N ,Sh), δ(N ,Shx), δ(N , imΣ)

}
≤ c(g, r) max{1, hΘ(A)} ,

and one can take c(g, r) = 4 + 8C2 + g log(π−gg!eπr
2
g4) + 4r2g, where C2 is given in Corol-

lary 1.3.

Proof. As we have δ(N ,Sh) ≤ δ(N , imΣ)+δ(imΣ,Sh) and δ(N ,Shx) ≤ δ(N ,Sh)+δ(Shx,Sh),
it suffices to upper bound the three quantities δ(N , imΣ), δ(imΣ,Sh) and δ(Shx,Sh).

We begin by δ(N , imΣ). By definition, one has imΣ ⊂ N , so we are in fact trying to bound
the index of a sublattice. We use the notation N and imΣ for the lattices considered with the
hermitian structure given by the Riemann form associated to L. Then we have :

δ(N , imΣ) = d̂eg(N )− d̂eg(imΣ) .

We then use the point (v) in Theorem 3.4 to estimate the slope of π∗L and the slope
inequality of [Bo96a] Proposition 4.3 page 795–15 to get :

δ(N , imΣ) ≤ 2hF (A)− 1
2

log
(

r2g

(2π)g

)
+

1
[K : Q]

∑
σ:K↪→C

log ‖Σ‖σ .

Use then the inequality of [Bo96a] page 795–29. One can precise the constant denoted C27

by using Lemma 5.8 page 795–25 combined with the estimate on the “rayon d’injectivité” of
[DaPh02], Lemma 6.8 page 698, to get :

1
[K : Q]

∑
σ:K↪→C

log ‖Σ‖σ ≤
(g

2
log(π−gg!eπr

2
g4)
)

log(2 + hΘ) .

Note that a similar estimate has been obtained in [Gra01] equation (24) page 108, with the
Faltings height instead of the Theta height.

We now estimate δ(N ,Sh). As explained in [Bo96a] page 795–28, one has :

Σ : π∗L⊗r
2 × π∗L⊗r

2 → π∗L⊗2r2 ⊗ Ω1
A/K → Ω1

A/K,0

s1 ⊗ s2 7→ s⊗2
2 d(s1/s2) 7→ s⊗2

2 d(s1/s2)|0
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Thus we need to clear out the denominators of Sh in exactly the same way as done in this
definition of Σ ; it suffices to multiply by

∏
θx(0)2, where the product is taken over all

x ∈ Γ(A,L⊗r
2
) such that θx(0) 6= 0. We then roughly upper bound :

δ(N ,Sh) ≤ 2r2ghΘ(A) .

We finally give the estimation of δ(Shx,Sh). We have Shx ⊂ Sh, so, clearing out the
denominators as above :

δ(Shx,Sh) =
1

[K : Q]
log Card

(
Sh/Shx

)
≤ 2r2ghΘ(A) .

We can conclude by using Corollary 1.3 to explicitely compare hF (A) and hΘ(A).
�

We give the following easy lemma to get the last corollary of Theorem 6.5 :

Lemma 6.6. Let a ≥ 1, b ≥ 1, c > 0 and d ∈ R. If |a− b| ≤ c log(2 + min{a, b}) and d ≤ a,
then :

d ≤ (1 + 2c) min{a, b} .

Proof. Just write d ≤ a ≤ b+ c log(2 + min{a, b}) ≤ b+ c log(2 + b) ≤ b+ 2cb. �

Corollary 6.7. Let g ≥ 1 and r > 0 an even integer. There exists a constant c(g, r) > 0 such
that for any triple (A,L, r) with A of dimension g, for any associated MB number field K,
for any x ∈ Γ defining a small Shimura lattice, one has :

max
{
δ(N ,Sh), δ(N ,Shx), δ(N , imΣ)

}
≤
(

1 + 2c(g, r)
)

min{hΘ, hF } ,

and one can take c(g, r) = 4 + 8C2 + g log(π−gg!eπr
2
g4) + 4r2g, where C2 is given in Corol-

lary 1.3.
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